Chapter 7
Mitigation of Wear Damage by Laser Surface Alloying Technique

Isaac Damilola Adebiyi
Vaal University of Technology, South Africa

Patricia A. P. Popoola
Tshwane University of Technology, South Africa

Sisa Pityana
Council for Scientific and Industrial Research, South Africa

ABSTRACT
Today’s increasingly extreme and aggressive production environments require that machine components be made with materials having specific surface properties such as good wear resistance. Unfortunately, nature does not provide such materials, and alloys having these specific properties are usually very expensive and their use drastically increases components and production costs. Moreover, the economic implications of wear, in form of detrimental effects – and waste, are severe. This includes replacement costs, and all downtime costs related to such replacement. Consequently, companies will increasingly need to look to wear reduction as a direct, immediate avenue for maintaining output quotas and for cutting production costs. Laser coating of engineering alloys with wear resistant materials is one efficient and economical means of increasing the wear resistance of these alloys. This work discusses laser coatings for wear prevention. Different wear mechanisms are discussed and the coatings for specific environment are identified. This will provide information for combating wear.

DOI: 10.4018/978-1-5225-0329-3.ch007
INTRODUCTION

Wear is a damage to the surface of a solid as a result of progressive loss (removal) or displacement of material from the surface by the mechanical action of impact, erosion, metal-to-metal contact, abrasion, oxidation, and corrosion, or a combination of these (Camacho et al. 2014). Wear occurs when interaction between two surfaces or bounding faces of solids within the working environment produces dimensional loss of one solid, with or without any actual decoupling and loss of material. Wear is the predominant factor that controls the life of any machine part. Metal parts often fail their intended use not because they fracture, but because they wear, which causes them to lose dimension and functionality. Wear damage occurs in twofold. The first is the loss of materials from the surfaces that are in contact which causes reduction in dimension of the components or parts. The implication of this is increase in the dimensional tolerance between the moving parts. Consequently, there will be high vibration, high noise, reduced efficiency and malfunctioning of the system. In situations where dynamic loading is involved, the reduction in component dimension could promote fatigue fracture which can lead to catastrophic failure. Secondly, wear debris (material which detached from worn surface), is harmful and may cause contamination, for example, in a food or beverage processing machine. Moreover, the debris may act as abrasives when trapped inside the contacting surface leading to increased wear rate. The debris may also block valves, critical pipes, oil filters or may accumulate in an electrical contacting point preventing the normal function of a system (wu et al, 2014, Zmitrowicz, 2005, Bayer, 2002).

Wear is affected by: the working environments such as load, speed and temperature; different types of counter-bodies such as solid, liquid or gas also affect wear; and the type of contact which ranges between single phase or multiphase - which may combine liquid with solid particles and gas bubbles. According to Davis (2001), wear causes metallic surfaces to deteriorate progressively which leads to loss of plant efficiency and at worst a shutdown. Although there are four wear mechanism such as: surface fatigue, abrasion, adhesion and tribochemical reaction, most worn parts do not fail from a single mode of wear, but from a combination of modes, such as abrasion and impact. Four main types of wear systems (tribosystems) are identified. These are:

- Relatively smooth solids sliding on other smooth solids.
- Hard, sharp substances sliding on softer surfaces.
- Fatigue of surfaces by repeated stresses (usually compressive).
- Fluids with or without suspended solids in motion with respect to a solid surface
An Ergonomic Analysis on Working Postures of Construction Site Workers: A Framework for Construction Site Workers
www.igi-global.com/chapter/an-ergonomic-analysis-on-working-postures-of-construction-site-workers/202656?camid=4v1a

Enhancement of Energetic Materials Combustion Process
www.igi-global.com/chapter/enhancement-of-energetic-materials-combustion-process/195298?camid=4v1a