Performance Comparison of Cuckoo Search Algorithm to Solve the Hybrid Flow Shop Scheduling Benchmark Problems with Makespan Criterion

M.K. Marichelvam, Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi, India
Ömür Tosun, Department of International Trade and Logistics, Faculty of Applied Sciences, Akdeniz University, Antalya, Turkey

ABSTRACT

In this work, the performance of cuckoo search algorithm (CSA) is measured solving the multistage hybrid flow shop (HFS) scheduling problems with parallel machines. The objective is the minimization of makespan. The HFS scheduling problems are proved to be strongly non-deterministic polynomial time-hard (NP-hard). Proposed CSA algorithm has been tested on benchmark problems addressed in the literature against other well-known algorithms. The results are presented in terms of percentage deviation (PD) of the solution from the lower bound. The results indicate that the proposed CSA algorithm is quite effective in reducing makespan because average PD is observed as 1.531, whereas the next best algorithm has result of average PD of 2.295 which is in general nearly 50% worse and other algorithms start from 3.833.

KEYWORDS

Cuckoo Search Algorithm (CSA), Hybrid Flow Shop (HFS), Makespan, Scheduling

1. INTRODUCTION

Scheduling is one of the most important decision making process in production and operation management. The hybrid flow shop (HFS) environment is a combination of parallel machine and flow shop environments. The HFS scheduling problem was first addressed by Arthanari and Ramamurthy (Arthanari & Ramamurthy, 1971). The HFS scheduling problems are NP-hard type combinatorial optimization problems (Gupta 1988; Hoogeveen et al. 1996). The HFS is also called as flow shop with multiple processors (machines), flexible flow shop (FFS), multiprocessor flow shop, or flow shop with parallel machines (Ribas et al. 2010). Researchers applied branch and bound method (Brah
& Hunsuchker, 1991; Moursli & Pochet, 2000) and heuristics (Haouari & M’Hallah, 1997; Riane et al. 1998; Oguz et al. 2003; Wang & Liu, 2013) to solve the problems. Many metaheuristics such as genetic algorithm (GA) (Hou et al. 1994; Serifoglu & Ulusoy, 2004; Oguz & Ercan, 2005; Shenassa & Mahmoodi, 2006; Shiau et al. 2008; Kahraman et al. 2008; Engin et al. 2011), simulated annealing (SA) algorithm (Serifoglu & Tiryaki, 2002; Low 2005; Naderi et al. 2009; Wang et al. 2010), ant colony optimization (ACO) algorithm (Ying & Lin, 2006; Alaykiran et al. 2007), artificial immune system (AIS) algorithm (Alisantoso et al. 2003; Engin & Döyen, 2004; Niu et al. 2009; Ying 2012) and particle swarm optimization (PSO) algorithm (Liao et al. 2012; Chou 2013; Li et al. 2014) are utilized by the researchers to solve the HFS problems. Tabu search (TS) algorithm (Bozejko et al. 2013), greedy algorithm (Kahraman et al. 2010) and water flow algorithm (Tran & Ng, 2013) are also applied to solve the HFS scheduling problems. The detailed review on HFS scheduling problems and comparison of different algorithms can be found in (Ruiz & Vazquez-Rodriguez, 2010; Jungwattanakit et al., 2009; Syam & Al-Harkan, 2012, respectively).

Cuckoo search algorithm is a population based meta-heuristic algorithm based on the obligate brood parasitic behavior of some cuckoo species in combination with the Lévy flight behavior of some birds and flies in the nature (Yand & Deb, 2009). Yang and Deb (Yang & Deb, 2010) solved various optimization problems using the CSA. CSA has been proposed for solving knapsack problems (Layeb, 2011; Gherboudj, 2012), steel structure optimization problems (Kaveh et al. 2012; Gandomi et al. 2013), scheduling problems (Marichelvam, 2012; Marichelvam et al. 2014), multimodal optimization problems (Jamil & Zepernick, 2013), travelling salesman problems (Ouyang et al. 2013), reliability optimization problems (Valian et al. 2013) and machining parameters optimization problems (Yildiz, 2013). Cuckoo search and tabu search algorithms are hybridized to solve the quadratic assignment problems (Dejam et al. 2012). Detailed review on cuckoo search algorithm can be found in (Fister et al. 2013). Also there are new promising algorithms like neighborhood field and contour gradient optimization which initially designed for continuous optimization but soon to be adapted for scheduling problems (Wu et al., 2013).

Though wide variety of heuristics and meta-heuristics has been applied to solve HFS scheduling problems, the applications of recently developed bio-inspired meta-heuristic algorithms are very limited. Hence, in this paper, we propose the recently developed metaheuristic cuckoo search algorithm (CSA) for solving the multistage HFS scheduling problems with makespan objective. Its results will be compared against another recent algorithm (Bat algorithm) and others from the literature. The rest of the paper is organized as follows. Section 2 presents the problem definition. Section 3 will describe the proposed metaheuristic algorithms in detail. An overview of the computational experiments and results are given in Section 4. In Section 5, overall conclusions are drawn and future research paths are briefly highlighted.

2. PROBLEM DEFINITION

In a HFS scheduling problem, a set of \(n \) jobs are available simultaneously to be processed sequentially on different stages. Each job \(j \) has its fixed processing time for every stage \(s, s \in \{1, 2, \ldots, M\} \) and at each stage there is a set of identical parallel machines \(m \in \{1, 2, \ldots, m_s\} \) where some production stages may have only one machine, but at least one production stage must have multiple machines. Each job may consist of different operations. These operations will be performed by any one of the machines at different stages. The jobs arrive at first stage where the corresponding operations are to be performed and the jobs are delivered to the next stage for the completion of succeeding operations. The jobs have to pass through all the stages sequentially. The objective of scheduling is to assign jobs to the machines at the corresponding stages and determine the processing sequences on the machines so that the makespan (Cmax), i.e., the maximum completion time is minimized. The layout of a HFS environment is shown in Figure 1.
Related Content

Optimal Power Flow with TCSC and TCPS Modeling using Craziness and Turbulent Crazy Particle Swarm Optimization
www.igi-global.com/chapter/optimal-power-flow-tcsc-tcps/65811?camid=4v1a

Networks Do Matter: The Socially Motivated Design of a 3D Race Controller Using Cultural Algorithms
www.igi-global.com/chapter/networks-matter-socially-motivated-design/65816?camid=4v1a
Transmission Expansion Planning by using DC and AC Models and Particle Swarm Optimization
www.igi-global.com/chapter/transmission-expansion-planning-using-models/72832?camid=4v1a

Privacy Preserving Classification of Biomedical Data With Secure Removing of Duplicate Records
www.igi-global.com/article/privacy-preserving-classification-of-biomedical-data-with-secure-removing-of-duplicate-records/210540?camid=4v1a