Chapter 2
California’s “Fast-Track” to High-Speed Rail:
The Early Challenges and Ultimate Success of the California High-Speed Rail Project

Rod Diridon Sr.
Mineta Transportation Institute, USA

Ben Tripousis
California High-Speed Rail Authority, USA

ABSTRACT

For over 50 years, after both public and private studies confirmed California’s need for high-speed rail, nothing happened. The rest of the US had a similarly disappointing experience when attempting to break into the rapidly growing family of nations with operating high-speed trains. Yet, over the past year, California has contracted over $2.5 billion in high-speed rail civil work, is preparing RFPs for three times that amount, and has secured commitments for nearly $25 billion in additional federal and state funding over the next 30 years. Private investors are lining up for the nation’s first high-speed rail public-private partnership to complete this $68 billion, 540 mile project. This chapter describes the unprecedented technical excellence, political courage, and visionary voter support that created that high-speed rail breakthrough for California and the nation.
INTRODUCTION

The US has been denied the advantages of high-speed rail now enjoyed by all of the other industrialized nations of the world. Japan’s Shinkansen has been operating for over 50 years, while the French TGV began over 30 years ago. After carrying billions of riders, neither system has experienced even one fatality from operations. China, in just 15 years of construction, has completed over 8,000 miles of a 230-mile-per-hour system, with more under construction. Spain, an economically challenged country, has built over 2,000 miles of high-speed rail, creating good jobs and promoting economic recovery. The success stories are legion, with few if any failures. The tried-and-true adage is that the country that moves people to work and product to market most efficiently wins the geoeconomic competition. On that basis, the US, in its reliance on gridlocked highways and inefficient short-hop air travel in the congested major metropolitan regions, is losing that competition and has little hope of catching up. And, unlike Japan and France, which are in compliance with the historic Kyoto accords, the US has no prospect of meeting those now-obsolete but still internationally desired guidelines for combating climate change. The US is relying too heavily on carbon-intensive power and shunning high-speed rail technology, the linchpin of the other electrically powered international transportation systems.

This chapter carries the reader step-by-step through California’s many faltering steps to the current successful high-speed rail construction project. The confounding experiences are shared along with the remarkable examples of insight, courage, and public support. The homily shared by both Californians and others, some with pride and others with fear, is that as California goes so goes the nation. Indeed, California will now be a high-speed rail state. Many in California and across the country hope that the homily is true.

Background

The explosion of rail service in the late 1800s opened up and molded California. Prior to the introduction of the Transcontinental Railroad, regarded by many as the greatest project ever attempted, the trickle of hardy easterners to California barely changed the Spanish Colonial culture of the region that had recently been ceded to the United States by Mexico. But the sleepy social and economic system created by the Catholic Franciscans and the Spanish grandees was about to be awakened with the clang of hammers on steel and the urgent, strident, impatient sound of steam!

Tens of thousands of Chinese, Irish, and Italian laborers earned their right to US citizenship while binding the country with a new “high-speed” rail system that could travel as fast as 25 miles per hour, then 50, 75, and – on a good day with no inspectors watching – over 100 miles per hour using high-pressure steam produced
Allocation Criteria for Increasing Electronic Toll Collection Gates on Freeways Determined Using Simulation Analysis
www.igi-global.com/chapter/allocation-criteria-for-increasing-electronic-toll-collection-gates-on-freeways-determined-using-simulation-analysis/144565?camid=4v1a

Definition of Static Nonlinear Procedure and Flexibility-Based Model with Application on 2D Model for an Existing Structure and Comparing Results with Time History Analysis

Integrating Sustainable Engineering Principles in Material Science Engineering Education
www.igi-global.com/chapter/integrating-sustainable-engineering-principles-in-material-science-engineering-education/144553?camid=4v1a