An Improved Security 3D Watermarking Method Using Computational Integral Imaging Cryptosystem

Yiqun Liu, School of Physics and Optoelectronic Engineering, Xidian University and Department of Electronic Technology, Engineering University of Chinese Armed Police Force, Xi’an, China
Xiaorui Wang, School of Physics and Optoelectronic Engineering, Xidian University, Xi’an, China
Jianqi Zhang, School of Physics and Optoelectronic Engineering, Xidian University, Xi’an, China
Minqing Zhang, Department of Electronic Technology, Engineering University of Chinese Armed Police Force, Xi’an, China
Peng Luo, Department of Electronic Technology, Engineering University of Chinese Armed Police Force, Xi’an, China
Xu An Wang, Department of Electronic Technology, Engineering University of Chinese Armed Police Force, Xi’an, China

ABSTRACT

Robustness and security are difficult to be solved by conventional two-dimensional (2D) digital watermarking technology. In recent years, three-dimensional (3D) digital watermarking has become a new hotspot in optical information security. This paper presents a new improved security 3D digital watermarking method based on computational integrated imaging cryptosystem. Firstly, 3D digital watermarking is generated and encrypted by computational integral imaging cryptosystem that is implemented with smart pseudoscopic-to-orthoscopic conversion (SPOC) model. Secondly, discrete wavelet transform algorithm is applied to embed and extract the 3D digital watermarking. Finally, the extracted watermark is decrypted, and 3D digital watermarking is displayed by integral imaging system. The feasibility and effectiveness of the proposed method is demonstrated by experiment. A primary implication of encrypted processing is that the majority of integral imaging cryptosystem will be encryption-in-the-loop applications, and the majority of system will improve the security and robustness of 3D digital watermarking. The new method is able to meet the requirements of robustness and security. Image quality and display quality achieve these criterions of the human visual model. The proposed method can be applied in the aspects of cloud computing and big data.

KEYWORDS

3D Digital Watermarking, Cryptosystem, Discrete Wavelet Transform, Integral Imaging

1. INTRODUCTION

With the rapid development of modern communication technologies, threats on network information security are increasing, people are not only concerned about the multimedia information should not be illegally copied, distributed and tampered, but also pay more attention to security and confidentiality of information transmission. Digital watermarking provides secure means for copyright protection, content authentication, encrypted communication, and digital forensics of multimedia products. Watermark images is embedded into cover images in spatial domains (Cox, & Kalker, 2008; Abbas Cheddad, & McKevitt, 2010; Tang Qing sheng, & She Kun, 2005; Shen Chang-Xiang, 2007). Currently
there are various methods for embedding and extraction of digital watermarks. The methods fall into two types: spatial domain methods and transform domain methods. In spatial domain methods, it is easy to realize embedding and extraction of digital watermarks but with weak robustness. In transform domain methods, watermarks are processed in transformed frequency domains, with better robustness and invisibility. To the best of our knowledge, transform domain technology of digital watermarking has become a new hotspot in digital watermarking research. Common transform domain methods are Discrete Cosine Transform (DCT) algorithm, Fast Fourier Transform (FFT) algorithm, discrete wavelet transform (DWT) algorithm, and so on. It becomes a new research hotspot on information hiding with optical techniques. Digital holography (Takai, & Mifune, 2002; Matoba, & Javidi, 2009) and random-phase encoding (Kishk, & Javidi, 2002; Peng, & Yu, 2006) are two major optical information hiding techniques. Digital holography is a technique (Takai, & Mifune, 2002; Matoba, & Javidi, 2009) to record with interferometer method the space phase of an object in intensity modulation form. Random-phase encoding, however, realizes information encryption via optical transformation processing (Kishk, & Javidi, 2002; Peng, & Yu, 2006) of random-phase marks and lens. Xiang Peng et al. introduced a 3D digital watermarking algorithm based on virtual optics (Peng, & Yu, 2006; X. Peng, & D. Zhang, 2005). The algorithm realizes embedding and blind extraction of 3D digital watermarks utilising the morphological variation of virtual Fresnel diffraction in 3D space. To enhance robustness and security of digital watermarks, multi-image digital watermarking was proposed in (Giakoumaki, & Koutsouris, 2006). The 3D digital watermarking algorithm is based on wavelet decomposition. Various watermark information is embedded into various wavelet subbands, watermark data may be digital signature and personal information of the copyright owner. This method, which can be also applied in image communication and copyright protection of images, significantly improves robustness of digital watermarks. The invisibility of watermarks, however, decreases as the watermark information accumulates. Processing time of watermark embedding and extraction will be extended.

Optical image encryption techniques have attracted significant interest as they offer the possibility of high-speed parallel processing of 2D image data, of hiding information in many different dimensions, i.e. of multiple degrees of freedom (Matoba, & Javidi, 2009; Refregier & Javidi, 1995). Refregier and Javidi (1995) proposed double random phase encoding technology based on 4/f systems, which opened a new field of optical information security research, and since then, different transform domain algorithms have been proposed to improve the security level of the optical information hiding with double random phase encoding. Researchers are trying to make progress on these issues.

Integral imaging is a major technique in the next generation autostereoscopic display (Lippmann, 1908; Hong, & Lee, 2011; Xiao, & Javidi, 2013). In 2007, researchers from Korea including Dong-Choon et al. (2007) found that integral imaging could be applied in the research of digital watermarking. Information hiding could be realized if attacks were under control. The quality of reconstructed images would be significantly degraded by the interference between adjacent pixels because the reconstruction method to calculate integral imaging was actually cascading pixel reconstruction. Researchers including Yong-Ri Piao (2009) introduced a moderate image encryption method, in which pixels of cover images were scrambled using integral imaging and pixel scrambling techniques. Elemental images (EIs) were recorded, captured, and generated by a lenslet array. Researchers such as Chaochao Ji et al. (2012) proposed a content controlled stereoscopic display technique, in which various pixels were extracted from EIs and then reconstructed and displayed with integral imaging system. Observers could see different 3D scenarios from different view angles and directions. Privacy protection was realized. EIs generated by a computer were embedded into cover images in cellular automata transform domain utilizing the characteristics of the human vision system (Xiao Wei Li & Seok Tae Kim, 2014). The work, however, failed to analyze the impact of geometric distortion attack on watermarks. The literature (Muniraj & Lee, 2014) presents a new method for 3D scene acquisition via reconstruction with multispectral information and its Fourier-based encryption using computational integral imaging, by which the field of view, resolution, and information security are
From Social Capital to Social Production Implications for Individuals, Organisations and Nations
www.igi-global.com/chapter/social-capital-social-production-implications/45306?camid=4v1a

Social Media, New ICTs and the Challenges Facing the Zimbabwe Democratic Process
Nhamo Anthony Mhiripiri and Bruce Mutsvairo (2013). *New Media Influence on Social and Political Change in Africa* (pp. 402-422).
www.igi-global.com/chapter/social-media-new-icts-challenges/76856?camid=4v1a