Synthesizing Technological and Pedagogical Knowledge in Learning Design: A Case Study in Teacher Training on Technology Enhanced Learning

Kyparisia A. Papanikolaou, School of Pedagogical and Technological Education, Athens, Greece
Katerina Makrh, School of Pedagogical and Technological Education, Athens, Greece
George D. Magoulas, Birkbeck College, University of London, London, UK
Dionisia Chinou, School of Pedagogical and Technological Education, Athens, Greece
Athanasios Georgalas, School of Pedagogical and Technological Education, Athens, Greece
Petros Roussos, Department of Psychology, University of Athens, Athens, Greece

ABSTRACT

Based on a design rational for constructivist pre-service teacher training on Technology Enhanced Learning (TEL), in this paper the authors consider teachers as designers of innovative digital educational content. Under this lens, the selection of appropriate technologies is considered as a threefold process that concerns the availability of technological tools for implementing a virtual classroom that facilitates communication, collaboration, and administration, the enabling technologies for serving specific learning purposes, and the technologies or tools that support trainees to design effective TEL-based courses. A number of questions emerge as the authors are looking for the most appropriate technologies for cultivating certain competences related to class operation, learning design and student engagement in a constructive manner. As a first step, in this paper, they investigate how trainees combine particular technologies with pedagogical tools to cultivate specific competences i.e. certain types of Technological Pedagogical Content Knowledge. Lastly, factors that trainees perceive as influential when adopting TEL tools in practice are revealed by their study.

KEYWORDS

Learning Design, Teacher Training on Technology Enhanced Learning, Technological Pedagogical Content Knowledge (TPACK)

1. INTRODUCTION

Integrating technology in teaching offers many opportunities for engaging learners and strengthening the learning process. However, it also introduces constraints on functions that particular technologies can serve as well as on actions or activities that can be performed in real educational contexts (AACTE, 2008). An important issue in this process is understanding how teaching and learning are transformed when particular technologies are adopted to encourage specific learner behavior. In that respect, the pedagogical affordances and constraints for a range of technologies within specific contexts (involving parameters such as discipline, target group, location) need to be carefully considered. When it comes

DOI: 10.4018/IJDLDC.2016010102
Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
to teacher training, in particular, where frameworks such as TPACK-the Technological Pedagogical Content Knowledge (Mishra and Koehler, 2006) are adopted, constant interplay between teachers’ understanding of technologies and pedagogical content knowledge is required to create effective technology-enhanced learning. In this context, the main challenge is to engage teachers in activities that will lead to new experiences in classrooms, such as learning through virtual worlds, Web 2.0 technologies or other digital environments that many of the teachers had never experienced as students. Other challenges in this respect involve bridging the gap between technology and pedagogy, areas that are traditionally ruled by different specialties. To this end, it is important to prepare teachers for designing learner-centered courses that integrate technologies appropriate for their subject matter as well as for using technologies that support processes, such as communication, collaboration, class interaction, and administration.

To address these challenges, we design blended learning teacher training courses that build on the concept of learning design. Trainees are presented with appropriate technological and pedagogical tools in order to work collaboratively (synchronously and asynchronously) in the field of their expertise towards the development of a tangible and usable learning design, effectively addressing the needs of their future students. In this paper, we focus on the main features of the technologies required to support blended learning in teacher training contexts. We specifically examine how specific technologies can support various types of learning outcomes and relevant types of activities, and consequently how technological knowledge may interact with pedagogical knowledge and pedagogical content knowledge. Furthermore, we investigate teacher trainees’ perceptions on the various types of knowledge that they develop during training. Our analysis is based on quantitative and qualitative data collected from training sessions with teachers studying towards a postgraduate certificate in education. Lastly, factors that trainees perceive as influential for the adoption of these Technology Enhanced Learning (TEL) tools in real educational contexts are identified.

2. TECHNOLOGICAL KNOWLEDGE IN TEACHER TRAINING

The selection of appropriate technologies for a teacher training course looks like a problem-solving task. In this context, technology is perceived as a three-dimensional scheme: it provides trainees the means for designing a course that exploits TEL, the means for implementing a virtual classroom enabling communication, collaboration, and administration processes, and the enabling technology applications for serving particular learning purposes.

In Papanikolaou, Gouli & Makri (2014) we have proposed a design rational for constructivist pre-service teacher training on TEL, based on a view of teachers as designers of innovative content working individually and collaboratively, discussing and interacting with the instructor and their peers. This rational is based on a combination of TPACK with Communities of Inquiry (CoI) (Garrison and Vaughan, 2008). TPACK is used as the basis for designing the curriculum and content of the course in the form of learning design activities for trainees. CoI is used as the basis for designing interaction in the context of f-2-f and asynchronous discussions/collaboration, teacher support and learning activities that promote higher levels of learning in a blended learning context (Makri, Papanikolaou, Tsakiri & Karkanis, 2014). Technologies involved in such a course should also empower class operation in a constructivist manner, allowing various modalities of online interaction and supporting trainees’ engagement in learning design activities. In this context, aspects that worth exploring further are how particular technologies can be combined with pedagogical tools to cultivate specific types of TPACK knowledge and what are trainees’ perceptions of the factors influencing the adoption or reuse of specific technologies in real contexts.

In particular, TPACK is a useful framework for thinking about what knowledge teachers should have to integrate technology into teaching and how they might develop this knowledge (Mishra and Koehler, 2006). TPACK acknowledges three interdependent components of teachers’ knowledge, namely technological knowledge (TK), pedagogical knowledge (PK), and content knowledge (CK),
Related Content

The Media Diet of University Students in Italy: An Exploratory Research*
[www.igi-global.com/article/media-diet-university-students-italy/43722?camid=4v1a](www.igi-global.com/article/media-diet-university-students-italy/43722?camid=4v1a)

Creating a Personalized Artificial Intelligence Course: WELSA Case Study
[www.igi-global.com/chapter/creating-personalized-artificial-intelligence-course/68455?camid=4v1a](www.igi-global.com/chapter/creating-personalized-artificial-intelligence-course/68455?camid=4v1a)
A Framework for Digital Competence Assessment
www.igi-global.com/chapter/framework-digital-competence-assessment/65634?camid=4v1a

Digital Citizenship for All: Empowering Young Learners With Disabilities to Become Digitally Literate
www.igi-global.com/article/digital-citizenship-for-all/209756?camid=4v1a