Chapter 10
The Internalization of Attention at 28,000 Feet: Revisiting the K2 2008 Disaster

Elmar Kutsch
Cranfield University, UK

Markus Hällgren
Umeå School of Business and Economics, Sweden

Neil Turner
Cranfield University, UK

ABSTRACT
In this chapter we argue that the ‘process’ approach to developing reliable organizational performance, although powerful, is insufficient for increasingly complex environments. We offer the alternative perspective of ‘mindfulness-based’ reliability, and use the K2 mountaineering tragedy of 2008 as a case in which this can be explored. This was the worst mountaineering disaster in history, in which 11 climbers lost their lives. Through extensive analysis and detailed interviews with survivors, we identify the underlying reasons and behaviors that can create ‘mindlessness’. Although this is an extreme example, we then explain how the issues can be valuable for managers in less extreme environments and synthesize a model of the organizational behaviors and cultural attributes that may be developed to support organizational mindfulness.

INTRODUCTION
Managers today face unprecedented uncertainty and change in their work role and in the wider environment. Although this is well-recognized, many organizations appear reluctant to embody this reality in their operating models. Instead, we see ever more elaborate systems and processes being developed in an effort to tame and control the complexity being faced. In many cases this is indeed sensible, but often it is an insufficient approach.

DOI: 10.4018/978-1-5225-0335-4.ch010
The Internalization of Attention at 28,000 Feet

Despite the increasing availability of tools, processes and advice, organizations consistently struggle to meet their objectives reliably. Execution can go awry not through lack of planning or inexperience of similar work, but because the environmental complexity is sufficiently high that consideration and forethought may be insufficient. A more nuanced understanding of the work is required.

THE CHALLENGE OF RELIABLE PERFORMANCE

We consider the work that organizations undertake in terms of the types of interactions and coupling of the individual elements (Benjamin & Levinson, 1993; Galbraith & Merrill, 1996). Interactions between elements can be understood on a continuum from linear to non-linear. Linear interactions are associated with single, identifiable, points of failure and systems with identifiable, planned interfaces. In contrast, the presence of non-linear (complex) interactions means that outcomes may be unknown (or unknowable). Components of an environment may be multifaceted and can fail in more than one direction (Roberts, 1990a). This can lead to unpredictable and invisible deviations from a planned state, which managers could not reasonably anticipate and which might not so readily be guarded against (Maylor, Turner, & Murray-Webster, 2013; Philbin, 2008).

The unknown, however, does not necessarily lead to catastrophic failure, unless points of failure interact with each other. The nature of the coupling between elements is of central importance. Loose coupling implies that events are relatively independent, and buffers or slack can limit the effects of interconnectivity. Loose coupling provides ‘breathing space’ to contain incidents, preventing them from gradually destabilizing the whole. In tightly-coupled systems (Perrow, 1984; Roberts, 1990a, 1990b), however, interdependencies between elements mean that incidents can build upon themselves and escalate rapidly.

The combination of interactions and coupling may lead to a range of situations in which the points of failure can accumulate – or ‘snowball’ - into a full-blown crisis. As Bonabeau (2007, p. 63) argues, “the enormous complexity of large scale systems like communications networks means that even tiny glitches can cascade into catastrophic events.” Our point of departure for this work was to understand how managers may respond more effectively to complex situations such as these. By considering these two dimensions (interactions and coupling), we have a straightforward way of representing the nature of the environment managers find themselves facing.

Routine-Based Reliability

The rational way to deal with loose coupling and linear interactions (Figure 1) is by establishing and adhering to routines. Routines are complex patterns of practice (Becker, 2005; Feldman & Pentland, 2003) from an established – often driven by past experience – set of choices. Routine-based reliability (Butler & Gray, 2006) posits that repeatable packages of practices help to reduce human variation as a cause of failure. Put simply, failure is ‘automated out’ of an environment through rules and procedures. System interactions and coupling are made ‘fail-safe’ through controlled repetition of past practices. Consistency of action is most promising in an environment with linear interactions and some limits to interconnectivity, so that changes to the standard ‘routinized’ practices can be accommodated.