Chapter 6

Fabrication and Processing of Pineapple Leaf Fiber Reinforced Composites

S. H. Sheikh Md. Fadzullah
Universiti Teknikal Malaysia Melaka, Malaysia

Zaleha Mustafa
Universiti Teknikal Malaysia Melaka, Malaysia

ABSTRACT

There is an increasing interest worldwide in the use of Pineapple Leaf Fibers (PALF) as reinforcements in polymer composites, since this type of natural fiber exhibit attractive features such as superior mechanical, physical and thermal properties, thus offer potential uses in a spectrum of applications. PALF contains high cellulose content (between 70-82%) and high crystallinity. However, being hydrophilic, it posed a compatibility issue particularly in a hydrophobic polymeric matrix system. Thus, their shortcoming need to be addressed to ensure good interfacial bonding at the fibers/matrix interphase before their full potential can be harnessed. This chapter summarized some of the important aspects relating to PALF and its reinforced composites, particularly the main characteristics of the fiber, extraction and pre-treatment process of the fibers. Following this, discussions on the available fabrication processes for both short and continuous long PALF reinforced composites are presented.

DOI: 10.4018/978-1-5225-0424-5.ch006
INTRODUCTION

This chapter is written to provide an insight about some of the past and recent advances in research and development of the natural fiber reinforced composites, with the focus on pineapple leaf fiber (PALF) and its reinforced composites. The main contents of this chapter are extraction, characterization, modification and fabrication techniques available in the literature as well the properties of various types of PALF reinforced composites. In addition, this chapter also highlights on the limitations and challenges in establishing reliable product from the proposed techniques.

BACKGROUND

To-date, with the growing concern to save and protect the environment, as well as with the noble notion to support sustainable manufacturing or “green” manufacturing, there is an increasing demand in the quest for finding alternative natural resources materials in developing renewable environmental-friendly composites, also known as biocomposites, as a substitute to the non-renewable synthetic petroleum-based composites. These efforts aid in minimizing global problems in dealing with the carbon footprint, global warming as well as waste management as a consequence of mass production of synthetic polymer composites worldwide. Such materials can be obtained from either renewable agricultural resources or waste or fully or partially degradable, hence features environmentally sustainable characteristics (Mishra, Mohanty, Drzal, Misra & Hinrichsen, 2004; Mitra, 2014; Smithipong, Tantatherdtam & Chollakup, 2015).

Other reasons for the overwhelming attention on the natural resources materials are due to large scale agricultural production annually in the world market. As an example, pineapple is the third most important tropical fruit after banana and citrus. In addition, recent works from the last twenty years have shown that these materials can potentially be considered as candidate materials for both structural and non-structural applications, offering desirable or excellent mechanical properties, by tailoring the polymer and or fiber geometry as well as their architectures (Mishra, Mohanty, Drzal, Misra & Hinrichsen, 2004; Chollakup, Tantatherdtam, Ujjin and Srismoot, 2011; Faruk et al., 2012; Danladi and Shu’aib, 2014).

According to Summerscales and Grove (2014), there are three basic resources of natural fibers, which are animal, mineral and plant. The plant-based natural fibers can be further categorized into several basic divisions; these being bast, which is from the stem such as flex, hemp, jute and kenaf, grasses such as bamboo or wheat straw, leaf such as abaca, sisal or pineapple, seeds such as cotton or coir or wood fibers. The structure of plant fibers can be further described to exhibit a hierarchical structure with three main components;
Related Content

A Study on the Parameters in Hard Turning of High Speed Steel
[www.igi-global.com/article/a-study-on-the-parameters-in-hard-turning-of-high-speed-steel/209710?camid=4v1a](www.igi-global.com/article/a-study-on-the-parameters-in-hard-turning-of-high-speed-steel/209710?camid=4v1a)

Exploiting 3D Medical Equipment Simulations to Support Biomedical Engineering Academic Courses: Design Methodology and Implementation in a Small Scale National Project
Adam Damianakis, Pavlos Kallonis, George Loudos, Dimitris Tsatsos and Antonios Tsoukalis (2017). *3D Printing: Breakthroughs in Research and Practice* (pp. 57-74).
[www.igi-global.com/chapter/exploiting-3d-medical-equipment-simulations-to-support-biomedical-engineering-academic-courses/168214?camid=4v1a](www.igi-global.com/chapter/exploiting-3d-medical-equipment-simulations-to-support-biomedical-engineering-academic-courses/168214?camid=4v1a)
Multi-Objective Optimization of Abrasive Waterjet Machining Process Parameters Using Particle Swarm Technique


www.igi-global.com/article/multi-objective-optimization-of-abrasive-waterjet-machining-process-parameters-using-particle-swarm-technique/118102?camid=4v1a

Advances in Polymer-Based Piezoelectric Systems


www.igi-global.com/chapter/advances-in-polymer-based-piezoelectric-systems/189645?camid=4v1a