Chapter 31

Denoising Ultrasound Medical Images: A Block Based Hard and Soft Thresholding in Wavelet Domain

A.S.C.S. Sastry
K.L. University, India

P.V.V. Kishore
K.L. University, India

Ch. Raghava Prasad
K.L. University, India

M.V.D. Prasad
K.L. University, India

ABSTRACT

Medical ultrasound imaging has revolutionized the diagnostics of human body in the last few decades. The major drawback of ultrasound medical images is speckle noise. Speckle noise in ultrasound images is because of multiple reflections of ultrasound waves from hard tissues. Speckle noise degrades the medical ultrasound images lessening the visible quality of the image. The aim of this paper is to improve the image quality of ultrasound medical images by applying block based hard and soft thresholding on wavelet coefficients. Medical ultrasound image transformation to wavelet domain uses debauchee’s mother wavelet. Divide the approximate and detailed coefficients into uniform blocks of size 8×8, 16×16, 32×32 and 64×64. Hard and soft thresholding on these blocks of approximate and detailed coefficients reduces speckle noise. Inverse transformation to original spatial domain produces a noise reduced ultrasound image. Experiments on medical ultrasound images obtained from diagnostic centers in Vijayawada, India show good improvements to ultrasound images visually. Quality of improved images in measured using peak signal to noise ratio (PSNR), image quality index (IQI), structural similarity index (SSIM).

1. INTRODUCTION

Medical ultrasound imaging (Hennersperger, Baust., Waelkens, Karamalis, Ahmadi & Navab, 2014); (Rabinovich, Friedman & Feuer, 2013); (Anquez, Angelini, Grange & Bloch, 2013) is extensively used to diagnostics of internal human body parts invasively. Ultrasound imaging tool has been cost-effective, portable and time saving. Computed Tomography (CT), Magnetic Resonance Imaging (MRI) produce
quality images compared to ultrasound imaging. Drawbacks include high operating costs along with
dangerously harmful electromagnetic radiations. With the advent of signal processing algorithms de-
mand for ultrasound image enhancements are on the high among the research communities around the
world (Hacini, Hachouf & Djemal, 2014); (Müller, Viaccoz, Kuzmanovic, Bonvin, Burkhardt, Bochaton & Sztajzel, 2014); (Deep Gupta, Anand & Tyagi, 2014); (Mace, Montaldo, Osmanski, Cohen, Fink & Tanter, 2013).

Image quality is the primary concern in ultrasound imaging due to the presence of speckle signals
that are picked up by the receiver from the hard tissues in the human body (Liang, Yung & Yu, 2013);
(Donati, Martini & Tambosso, 2013). To understand and investigate ultrasound images in order to obtain
quantitative information from them is a daunting task even for a trained eye. Safety and inexpensive
nature of ultrasound technology is the reason behind their extensive use in many clinical applications.
The challenge before researchers is to appendage medical ultrasound images for legitimate and accurate
information for diagnosis (Mauldin, Dan Lin & Hossack, 2011); (Asl & Mahloojifar, 2012); (Chengpu, Zhang & Lihua Xie, 2012).

Medical ultrasoundographic images are meagerly visible as the scanning process results in speckle
noise (Tay, Garson, Acton & Hossack, 2010) which occurs especially in the images of fetus of pregnant
woman, whose underlying structures are too small to be resolved by large wavelengths (Rueda, Fathima,
Knight, Yaqub, Papageorghiou, Rahmatullah; Foi, Maggioni, Pepe, Tohka, Stebbing, McManigle, Ci-
urte, Bresson, Cuadra, Changming Sun, Ponomarev, Gelfand, Kazanov, Ching-Wei Wang, Hsiang-Cho
Chen, Chun-Wei Peng, Hung & Noble, 2014). Thus speckle reduction (de-speckling) is an important
characteristic for analysis of ultrasound images. Many algorithms have been developed on despeckling
in spatial (Abd-Elmoniem, Youssef & Kadah, 2002) and transformed (Rabbani, Vafadust, Abolmaesumi,
& Gazor, 2008) domains in last decade. The algorithms in literature offer good denoising leaving their
effect on the edges of the objects in the image.

Spatial filters have been generally used for eliminate noise from images (Charles & Rozell, 2014).
Spatial filters typically soften the intensity levels of pixels to reduce the noise. Though spatial filters are
good at reducing noise to a large extent, they suffer by inducing blur to the edges of objects in the image.
Numerous new techniques have been reported in the last few years which improve on spatial filters by
removing the noise more effectively while preserving the edges in the data. Some of these techniques
use the concepts of partial differential equations and computational fluid dynamics such as level set
methods (Estellers, Zosso, Rongjie, Osher, Thiran & Bresson, 2012), total variation methods (Drapaca, 2009),
nonlinear isotropic and anisotropic diffusion (Elmoniem, Youssef & Kadah, 2002). Various other tech-
niques combine impulse removal filters with local adaptive filtering in the transform domain to remove
not only white and mixed noise, but also their mixtures (Rabbani, Vafadust, Abolmaesumi, & Gazor,
2008). In order to reduce the presence of noise in medical images many techniques are available from
the past such as linear filtering (Simon, VanBaren & Ebbini, 1998) adaptive filtering (Weiner Filters)
(Hasegawa, Kageyama & Kanai, 2013) and median filtering (Czerwinski, Jones & O’Brien, 1995).
However, digital filters, linear filters and adaptive filters proved to reduce noise in stationary signals.
For reducing noise from non-stationary signals, wavelet transform has been proven to be a useful tool for
signal and image analysis (Michailovich & Adam, 2002). Researchers have proposed many de-noising
algorithms on wavelet framework effectively but they suffer from shortcomings such as oscillations,
shift variance, aliasing, and lack of directionality.

The most widely used techniques for denoising in image processing are wavelet transform based
hard and soft thresholding (Jing, Yipeng, Qiang & Shen Yi, 2012); (Chen & Zhou, 2012). These two