Interpreting Experiences of Teachers Using Online Technologies to Interact with Students in Blended Tertiary Environments

Kimberley Tuapawa, University of Newcastle, Callaghan, Australia

ABSTRACT

This paper is part of a phenomenological study that examined teachers’ and students’ experiences using Educational Online Technologies (EOTs) in Blended Tertiary Environments (BTEs). Its aim was to understand how EOT engagement was experienced, to inform insights on EOT interactions, challenges, functionality and benefits. Semi-structured interviews were conducted with 10 teachers and 10 students from New Zealand and Australia, and their EOT experiences explored, under a range of different interactions. A series of six papers, each based on a specific interaction type, detailed their experiences. This paper reports on teachers’ EOT interactions with their students, in reference to three types of EOTs: Learning management systems, online video platforms, and online networking tools. Key aspects of the research approach adopted were detailed in the first of these six papers, and included the research questions, research significance, and research methodology. The strategies and rationales for participant selection, participant numbers, inclusion and exclusion criteria, data collection, and data analysis were also explained (Tuapawa, n.d.-a).

KEYWORDS

Blended Learning, Online Technology, Phenomenology, Tertiary Education, Teacher Experiences

INTRODUCTION

Educational online technologies (EOTs) have revolutionised the delivery of online education, making a significant contribution to the global increase in demand for higher learning. In an era of unparalleled online growth, their rapid emergence, adoption and demand has engendered significant advances across the higher education sector. Traditional learning spaces have evolved into dynamic blended tertiary environments (BTEs), providing tertiary education institutes (TEIs) with a modern means through which to augment course delivery. These digital transformations signal exciting prospects for teachers and students, the key stakeholders in BTEs. Predictions about future online learning, and the extent of recent growth, along with forecasts for EOT use are discussed in the first of these six papers (Tuapawa, n.d.-a).

Despite the significant growth and demand for online learning, considerable obstacles impede the use of EOTs. Such challenges include, but are not limited to attitudinal pre-dispositions and institutional barriers, insubstantial training, and inadequacies in instructional design support (Panda & Mishra, 2007). Other challenges include resistance to change, ineffective EOT usage, lack of motivation, technical constraints, and accessibility (Tuapawa, 2016). These challenges pose a clear risk to the future success of BTEs (Moskal, Dziuban, & Hartman, 2013), and create difficulties for stakeholders as they deliver and engage in learning.
Significant efforts have been made to better understand EOT challenges. This has resulted in considerable subject-specific research, with varied and noteworthy contributions to the literature. Some of these studies have focussed on technology integration into blended environments (Moore, 2013), technology to support institutional roles (Huynh, Gibbons, & Fonda, 2009), barriers to adoption of online learning (Bacow, Bowen, Guthrie, Lack, & Long, 2012), and the needs of online students (Mupinga, Nora, & Yaw, 2006).

However, while “our research foundation is rich” (Passey, 2013, p. 209), not all problems have been adequately identified and addressed. The nature and extent of EOT challenges change over time, as technology advances and stakeholder needs evolve. Gaps therefore exist, and unfortunately “significant challenges are preventing widespread effective implementation” (Nagel, 2013, p. 1), which collectively concerns TEIs. Some feel that “it is the university leadership…, it is the leaders at a university who must…see that…it happens…if widespread change is to occur” (Christie & Jurado, 2009, p. 278). Responsively, TEIs, many of whom are “under significant pressure to provide affordable, sustainable approaches” have collaborated to expand their knowledge-base of the value of online technologies (Beckem & Watkins, 2012, p. 61). Educationalists, administrators, and other key stakeholders have also striven to develop and adapt their technological knowledge and skills (Gregory et al., 2010).

However, the persistence of EOT challenges suggests that some stakeholder needs remain unmet, and that further action is required. Stakeholder needs in modern BTEs have shifted and are evolving, and in an environment of rapid change, are not being understood and addressed effectively. Adding to this, Moskal et al., acknowledge the environments under which these problems arise. They observe that TEIs accept the status quo, and that “ultimately, blended learning has become an evolving, responsive and dynamic process” (2013). While this transience may cast doubt on the on the longevity of new research, it provides strong reasons to obtain up-to-date solutions to real-time problems. The dynamic nature of TEI environments means that their relevance is dependent on their ability to evolve and adapt to the needs of key stakeholders. It is therefore imperative that they have a clear and current understanding of the EOT challenges facing teachers and students in BTEs, to deliver relevant, meaningful support.

This research addresses a gap in knowledge about EOT challenges, using a phenomenological approach to generate explanations about how EOT engagement is currently experienced by teachers and students. It creates a compelling and informative basis from which TEIs can understand how, why and where EOT support for stakeholders is necessary. Close analysis of the experiences also informs insights on EOT interactions, functionality and benefits. The outcomes assist TEIs to design approaches to tackle EOT challenges, make informed decisions on EOT use, deliver meaningful support to key stakeholders, and inform institutional strategies, to strengthen the future of BTEs². The meanings of these experiences³ may be applied across TEIs to enhance future EOT experiences, and provide informed stakeholder support. However, their application to developing nations without the infrastructure to support mainstream EOT usage is limited. Future studies could address this gap by examining and applying the findings of key stakeholder EOT experiences in developing nations⁴.

METHODOLOGY

Phenomenological interviews were conducted with ten students and ten students from TEIs in New Zealand and Australia. The aim was to gather descriptions of their experiences using EOTs in BTEs. Key aspects of this research methodology were detailed in the first paper (Tuapawa, n.d.-a). The interviews were semi-structured, and contained 27 questions. These questions explored the experiences under a range of different relationships, based on different interaction types’ as represented in the ‘Classification by Interaction’ taxonomy augmented by Culatta (2011), and the original classification proposed by Moore (1989). The ‘Classification by Interaction’ taxonomy categorised technologies by the relationship between learners and other parties. The first three interaction types of the original
10 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the product's webpage:

www.igi-global.com/article/interpreting-experiences-of-teachers-using-online-technologies-to-interact-with-students-in-blended-tertiary-environments/161787?camid=4v1

Recommend this product to your librarian:

www.igi-global.com/e-resources/library-recommendation/?id=2

Related Content

Do the Philosophical Foundations of Online Learning Disadvantage Non-Western Students?

www.igi-global.com/chapter/philosophical-foundations-online-learning-disadvantage/27613?camid=4v1a

Structure and Change in E-learning: An Ecological Perspective

www.igi-global.com/chapter/structure-change-learning/39464?camid=4v1a
Learning Outcomes and Affective Factors of Blended Learning of English for Library Science

Implementation and Evaluation of Flipped Algorithmic Class
www.igi-global.com/article/implementation-and-evaluation-of-flipped-algorithmic-class/217465?camid=4v1a