Chapter 13

A Theoretical Study of the Refractive Index of KDP Crystal Doped with TiO\textsubscript{2} Nanoparticles

Volodymyr Krasnoholovets

National Academy of Sciences of Ukraine, Ukraine

ABSTRACT

In the present chapter we study a nonlinear response of an optical matrix formed by the K\textsubscript{2}HPO\textsubscript{4} crystal doped with TiO\textsubscript{2} nanoparticles. Such doped matrix is a nonlinear optical system that is characterized by the cubic non-linear optical response at picosecond laser pulses. Laser pulses release photoelectrons from nanoparticles, which emerge as free carriers on the nanoparticles’ surface generating an electric field in local area of the K\textsubscript{2}HPO\textsubscript{4} matrix, which results in the phase transition from the paraphase to the ferroelectric phase state. The appeared ferroelectric phase induces a large polarization around TiO\textsubscript{2} nanoparticles, which in turn immediately produces a nonlinear optical response to the laser pulse of the inverse sign, such that the laser beam becomes more focused. The gigantic non-linear susceptibility $\chi^{(3)}$ responsible for the phenomenon of focusing of the laser beam is calculated by using the pseudospin model for the description of ferroelectric crystals and the expressions for nonlinear-susceptibility tensor components computed by other researchers.

INTRODUCTION

The third-order nonlinear optical effects (including nonlinear absorption and refraction) break the diffraction limit and form superresolution nanoscale spot (Wei, 2015). Especially important are the characteristics of the third-order effects. When a light beam with a frequency of ω is incident on the isotropic nonlinear medium, the nonlinear effect occurs, and the second-order nonlinear susceptibility $\chi^{(2)}$ can be neglected. The whole polarization is presented as

$$P[E(\omega)] = P^{(1)} + P^{(3)} = \varepsilon_0 \left[\chi^{(1)} + 3\chi^{(3)} |E(\omega)|^2 \right] E(\omega),$$

DOI: 10.4018/978-1-5225-0492-4.ch013
where $P^{(1)}$ and $P^{(3)}$ the linear and third-order nonlinear polarization, respectively, and, correspondingly, they are provided with the linear $\chi^{(1)}$ and third-order nonlinear $\chi^{(3)}$ susceptibility.

The single crystal potassium dihydrogen phosphate KH_2PO_4 is characterized by a unique set of properties, such as a wide range of optical transparency, nonlinear, electrooptical and piezoelectric effects. However, one of the main weaknesses of the crystal is its relatively low quadratic susceptibility. A possible way to increase the susceptibility and, subsequently, the efficiency of the three-wave processes is by altering its structure through a formation of nanocomposite medium (Grachev et al., 2012; Gayvoronsky et al., 2012, 2013). Nanoparticles incorporation into the KH_2PO_4 matrix was realized in order to design a novel lasing medium, which could result in the appearance of third-order nonlinear $\chi^{(3)}$ susceptibility. One of such nanoparticles is titanium dioxide TiO_2 especially in the anatase phase.

A successful growth of high quality KH_2PO_4 (KDP) crystals with incorporated TiO_2 anatase nanoparticles was demonstrated by Grachev et al. (2012). Those doped crystals of KH_2PO_4 were studied by using transmission and scanning electron microscopy, energy dispersive X-ray analysis, Fourier transformation infrared spectra, electron paramagnetic resonance spectra, and nonlinear optics. It was revealed that TiO_2 nanoparticles are embedded in the KH_2PO_4 not chaotically, but as layers separated at a distance of about 15 μm.

As Grachev et al. (2012) and Gayvoronsky et al. (2012, 2013) shown, the incorporation of anatase nanoparticles into the KH_2PO_4 crystal changes the sign of the refractive nonlinear optical response relatively to that of the pure KH_2PO_4 crystal matrix. The phenomenon is associated with the overlapping of the energy states of intrinsic defects in the crystal matrix and the surface state of TiO_2 nanoparticles.

TiO_2 nanoparticles with an average diameter $2R=15$ nm are uniformly distributed in plains of the KH_2PO_4 crystal. The density of TiO_2 in the KH_2PO_4 crystal varies from 10^{16} to 10^{17} m$^{-3}$. This allows one to determine an average distance between these nanoparticles equal to 15 μm in each plain of the KH_2PO_4.

Zamponi, Rothhardt et al. (2012) and Zamponi, Stingl et al. (2012) demonstrated that illumination of the K_2HPO_4 crystal with sub-50 fs pulses centered at a photon energy of 4.5 eV (wavelength 266 nm) excites the motion of ions, which results in the charge relocations induced by electronic excitations via the two-photon absorption. In the electronically excited state of the crystal low-frequency oscillations of the PO_4 tetrahedral have to be coherent, while the average atomic positions remain unchanged. Coherent longitudinal optical and transverse optical phonons, whose motion is dephased on a time scale of several picoseconds, drive the charge relocation generating a soft (transverse optical) mode that triggers a phase transition between the para- and ferroelectric phase of KH_2PO_4.

However, the observed phenomenon still was not studied theoretically. Namely, the mechanism of influence of TiO_2 nanoparticles at passing laser pulses remained unclear. In the present chapter a mechanics of nonlinear changes of the refractive index of the KH_2PO_4 crystal doped with TiO_2 nanoparticles, which were revealed by Gayvoronsky et al. (2012, 2013), Grachev et al. (2012), Zamponi, Rothhardt et al. (2012) and Zamponi, Stingl et al. (2012), is suggested.

A MECHANISM OF NONLINEAR CHANGES OF THE REFRACTIVE INDEX

A laser pulse of duration 40 ps passing through the doped KH_2PO_4 crystal (Figure 1) shows a change in its polarization, which means that anatase nanoparticles affected by the pulse, polarize the KH_2PO_4 crystal and this polarization in its turn affects the laser beam. Moreover, the laser beam seems induces a ferroelectric phase in the KH_2PO_4 even at a room temperature. Is such mechanism possible?