Chapter 2
Emerging Trends of Space-Based Wireless Sensor Network and Its Applications

Padmaja Kuruba
Global Academy of Technology, India

A. V. Sutagundar
Basaveshwar Engineering College, India

ABSTRACT

There is a great demand in space and earth observations applications. Traditional satellite missions have complex design architecture involving high cost in design, operation, launch and maintenance. Thus single large satellite is replaced by multiple, small satellites with distributed network, collaboratively performing the same functionality of large satellite. This has been motivated researchers to explore the application of terrestrial Wireless Sensor Network (WSN) to space. The main objective of using space based WSN is to have full power of remote sensing capabilities at all the relevant time horizons and geographical scales with high performance and low cost. It also strives for an optimal solution that gratifies the standards, sizes, air interfaces, network architecture, access schemes, fault tolerance, operating system, hardware components of on-board diagnostics etc. This chapter discusses the characteristics and challenges of Space-Based Wireless Sensor Network (SWSN).

INTRODUCTION

Sky is the Limit, but for us it’s the beginning.

The growing demand in space research and recent satellite technology has enhanced the future of space applications. Some applications are earth observation, telecommunication, military, scientific research, interplanetary exploration, etc. A significant breakthrough in terrestrial WSN in harsh environment has motivated to extend WSN to underwater application (Headrick, & Freitag, 2009; Heidemann, Ye, Wills, Syed, & Li, 2006) and space application (Gungor, Lu, & Hancke, 2010). The recent technological advances in Micro- Electro-Mechanical System (MEMS), advances in miniaturization and manufacturing
Emerging Trends of Space-Based Wireless Sensor Network and Its Applications

of low cost electronics components have driven interest in replacing large single satellite with multiple, small, low cost satellites to achieve the same goal of large satellite, with better performance (Arslan, Yang, Haridas, Morales, El-Rayis, Erdogan, & Stoica, 2009; Barnhart, Vladimirova, & Sweeting, 2007). Small satellites like satellite on chip, PCB sat of 300gms have demonstrated low cost miniaturisation of sub-kilogram technologies enabling sensor network architecture with increased power efficiency of 3.4% (Barnhart, Vladimirova, & Sweeting, 2007). Small satellite is referred to as sensor node and used interchangeably. The group of these small satellites collaboratively perform a task forming a distributed network. The distributed structure of satellite forms a sensor web known as Space based Wireless Sensor Network (SWSN). SWSN are similar to the terrestrial WSN. However, there exist significant challenges in hardware design, deployment, network architecture, topology formation and control, communication (inter-satellite, intra-satellite and to earth station), protocol stack, data gathering, aggregation and collision avoidance from debris and other nodes in the network. These technological adaptations of SWSN with emerging system architecture of distributed network of small satellites reduce impact of system/network breakdown due to functional fault of single large satellite under various atmospheric conditions. The SWSN with small satellites is quite challenging due to unique space environment.

The impacts of environmental conditions on small satellite are complex orbital mechanisms under non ideal perturbations, atmospheric conditions, vacuum, debris, radiation and launch mechanism. Realization of such networks is still a challenge and many researchers are working towards it. Aim of the chapter is to address the application of WSN in space and challenges to realize SWSN.

WHY SWSN?

In the year 1960, the first satellite TIROS-1(a US meteorological satellite) was launched for earth observation. Currently there are 1100 active satellites (including government and private launchers) and 2600 satellites that are non-functional. Figure 1 shows illuminated small light as the satellites in the orbit. The federal communications commission in space found that non functional satellites weighing up to 6

*Figure 1. Non functional satellite forming debris in space*
Related Content

A Wireless Mesh Network Platform for Vehicle Positioning and Location Tracking
www.igi-global.com/chapter/wireless-mesh-network-platform-vehicle/25594?camid=4v1a

Other Early Designs of Micropattern Detectors Developed Between 1998 and 2003
www.igi-global.com/chapter/other-early-designs-of-micropattern-detectors-developed-between-1998-and-2003/108175?camid=4v1a

Middleware Support for Wireless Sensor Networks: A Survey
www.igi-global.com/chapter/middleware-support-wireless-sensor-networks/41118?camid=4v1a

Handover in Mobile WiMAX: A Mobility Improvement
www.igi-global.com/chapter/handover-in-mobile-wimax/162387?camid=4v1a