Enhancing Student’s Higher Order Thinking Skills (HOTS) through the Socratic Method Approach with Technology

Salihuddin Md Suhadi, Department of Educational Mathematic, Science and Multimedia Creative, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
Hasnah Mohamed, Faculty of Education (FP), Department of Educational Mathematic, Science and Multimedia Creative, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
Zaleha Abdullah, Faculty of Education (FP), Department of Educational Mathematic, Science and Multimedia Creative, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
Norasykin Mohd Zaid, Faculty of Education (FP), Department of Educational Mathematic, Science and Multimedia Creative, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
Baharuddin Aris, Faculty of Education, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
Mageswaran Sanmugam, Department of Educational Mathematic, Science and Multimedia Creative, Universiti Teknologi Malaysia, Johor Bahru, Malaysia

ABSTRACT

Technologies have a potential to make learning more dynamic and capable of going conventional learning limits. With the utilization of online technologies for example, students can interact with teachers and other students, regardless of time and distance. The learning process can likewise happen in synchronize or asynchronies. Meaningful interaction is required in the Socratic method of learning because this is the concept of learning through question after question to build knowledge. The dialog collaboration, inquiries are either verbal or non-verbal. So this is where online innovation comes into the picture and allows students to always dialogue with certain individuals to construct new knowledge. Next, by using the Socratic method of learning, the high level of thinking can be increased which is emphasized in the field of education in Malaysia nowadays. This paper will discuss previous studies about the potential of technology in Socratic Methods to improve student’s level of thinking.

KEYWORDS
Enhance Higher Order Thinking Skills (HOTS), Learning, Socratic Learning Method, Technology in Education

INTRODUCTION

Technology nowadays can assist and support the activities of teaching and learning in order to make it more interesting and meaningful (Schwier, 2012; Dillenbourg & Sanna, 2009). In Reference to the Malaysia Education Blueprint (MEB) (2013-2025), Higher Order Thinking Skills (HOTS) is an element that is being emphasized. In order to achieve it, a learning method that is suitable for implementation to attract students and increase student involvement, understanding and to enable students to adapt the content of the lessons that have been learned. An appropriate learning methods used in improving the Higher Order Thinking Skills (HOTS) is the Socratic Learning Method. This was supported by Chesters (2012) in his book states that this method can build a Higher Order
Thinking Skills (HOTS). When the student has mastered the content of the lesson, they will be able
to diversify methods for finding the solution of a problem in line with the requirements of Higher
Order Thinking Skills (HOTS). Therefore, the role of technology in achieving the learning method
is greatly needed because according to van Bruggen, (2005), the learning environment will be even
more fun and interesting with the use of technology. The widespread use of technology can now
have an impact on the learning process. This is because the students; whom are from the generation
Z, can now easier to do things with cutting-edge technology in its environment. For example, with
presence of computer technology, students can complete assignments given by teachers and also make
presentations with the aid of a computer. Computer is a technology that can help humans perform
more efficiently and systematically; this allows work to be produced that will provide its own charm
to attract or make it a better quality performance. Online learning technology is said to be able to
improve students’ critical thinking. As is well known, critical thinking is a big part of the necessary
elements for a student to master the control of higher-order thinking. Bloom’s Taxonomy in 1956,
which was revised by Krathwohl and Anderson 2001 states that students are able to assess and create
a problem or a solution of the problem is said to have reached a high level with a good idea. Figure
1 shows the level of cognitive processes that have been reviewed by Krathwohl and Anderson 2001.
According to Anderson & Krathwohl again, there are 4 different types of knowledge to be mastered
by students to achieve higher-order thinking, namely:

1. **Factual Knowledge**: Knowledge of the basic elements for students to understand the workings
 of problem solving
2. **Conceptual Knowledge**: Incorporate some basic elements to allow the elements used together
 for basic troubleshooting
3. **Procedural Knowledge**: Creating a rule, inquiry, skills and techniques to the solution a problem
4. **Metacognitive Knowledge**: Mastering the knowledge to build a thought in accordance with
 their own solutions to problems faced

When students are able to master the procedure and metacognitive thinking, they are said to have
reached a level of critical thinking, parallel with the concept of critical thinking as shown in Figure
2. The concept of critical thinking that is equivalent to the concept of cognitive levels analyze and
evaluate. These two concepts are very important elements for solving a problem and so dominate

Figure 1. The level of cognitive process
12 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the product's webpage: www.igi-global.com/article/enhancing-students-higher-order-thinking-skills-hots-through-the-socratic-method-approach-with-technology/163378?camid=4v1

Related Content

Knowledge Management in Charities

Inter-Organisational Knowledge Transfer Process Model
Developing and Aligning a Knowledge Management Strategy: Towards a Taxonomy and a Framework
www.igi-global.com/article/developing-aligning-knowledge-management-strategy/2719?camid=4v1a

Transnational Knowledge Transfer
www.igi-global.com/chapter/transnational-knowledge-transfer/49095?camid=4v1a