A Case Study Perspective for Balanced Perioperative Workflow Achievement through Data-Driven Process Improvement

Jim Ryan, College of Business, Auburn University at Montgomery, Montgomery, AL, USA
Barbara Doster, University of Alabama Birmingham Hospital, Birmingham, AL, USA
Sandra Daily, Cullman Regional Medical Center, Cullman, AL, USA
Carmen Lewis, Sorrel College of Business, Troy University, Dothan, AL, USA

ABSTRACT

Based on a 143-month longitudinal study of an academic medical center, this paper examines operations management practices of continuous improvement, workflow balancing, benchmarking, and process reengineering within a hospital’s perioperative operations. Specifically, this paper highlights data-driven efforts within perioperative sub-processes to balance overall patient workflow by eliminating bottlenecks, delays, and inefficiencies. This paper illustrates how dynamic technological activities of analysis, evaluation, and synthesis applied to internal and external organizational data can highlight complex relationships within integrated processes to identify process limitations and potential process capabilities, ultimately yielding balanced patient workflow through data-driven perioperative process improvement. Study implications and/or limitations are also included.

KEYWORDS

INTRODUCTION

The perioperative process yields patient end-state goals: (1) a patient undergoes a surgical procedure; (2) minimal exacerbation of existing disorders; (3) avoidance of new morbidities; and (4) subsequent prompt procedure recovery (Silverman & Rosenbaum, 2009). To these end-state goals, a hospital’s perioperative process provides surgical care for inpatients and outpatients during pre-operative, intra-operative, and immediate post-operative periods. Accordingly, the perioperative sub-processes (e.g. pre-operative, intra-operative, and post-operative) are sequential where each activity sequence paces the efficiency and effectiveness of subsequent activities. Furthermore, perioperative sub-processes require continuous parallel replenishment of sterile supplies and removal of soiled materials. Given the multiple sub-processes and associated dynamics, Fowler et al. (2008) views a hospital’s perioperative process as complex and workflow complexity as a barrier to change and improvement. Nonetheless, integrated hospital information systems (IS) and information technology (IT) provide measurement and subsequent accountability for healthcare quality and cost, creating a dichotomy (e.g. quality versus cost) that represents the foundation for healthcare improvement (Dougherty & Conway, 2008).
The challenge of delivering quality, efficient, and cost-effective services affects all hospital stakeholders. Perioperative workflow tightly couples patient flow, patient safety, patient quality of care, and hospital stakeholders’ satisfaction (i.e., patient, physician/surgeon, nurse, perioperative staff, and hospital administration). Consequently, implementing improvements that will result in timely patient flow through the perioperative process is both a challenge and an opportunity for hospital stakeholders, who often have a variety of opinions and perceptions as to where improvement efforts should focus. Furthermore, perioperative improvements ultimately affect not only patient quality of care, but also the operational and financial performance of the hospital. From an operational perspective, a hospital’s perioperative process requires multidisciplinary, cross-functional teams to maneuver within complex, fast-paced, and critical situations—the hospital environment (McClusker et al., 2005). Similarly, from a hospital’s financial perspective, the perioperative process is typically the primary source of hospital admissions, averaging between 55 to 65 percent of overall hospital margins (Peters & Blasco, 2004). Macario et al. (1995) identified 49 percent of total hospital costs as variable with the largest cost category being the perioperative process (e.g., 33 percent). Managing and optimizing a quality, efficient, flexible, and cost-effective perioperative process are critical success factors (CSFs), both operationally and financially, for any hospital. Moreover, increased government and industry regulations require performance and clinical outcome reporting as evidence of organizational quality, efficiency, and effectiveness (PwC, 2012).

This 143-month longitudinal case study covers a clinical scheduling IS (CSIS) implementation, integration, and use within an academic medical center’s perioperative process. Empowered individuals driven by integrated internal and external organizational data facilitate the case results. The resulting systematic analysis and subsequent contextual understanding of the perioperative process identified opportunity for improvement. Specifically, the extension of data mining into the analysis and evaluation process of CSIS’ data feedback from particular perioperative sub-processes provides the framework for the discovery and synthesis of redesign and reengineering within perioperative workflow to yield continuous process improvement. This paper investigates the research question of how data-driven continuous improvements can balance perioperative sub-process workflow to improve overall patient flow. Furthermore, investigation of the research question in this paper explains how analysis of perioperative performance metrics (e.g., key performance indicators), evaluation of perioperative sub-process constraints and capabilities, and synthesis of perioperative sub-process redesign implemented to balance perioperative workflow can attain: (1) improved workflow, efficiency, and utilization; (2) tighter process to hospital IS coupling; and (3) patient care accountability and documentation. This study highlights operations management practices of continuous improvement, workflow balancing, best practices, process reengineering, and business process management within a hospital’s perioperative process. Measured improvements across intra-operative, pre-operative, post-operative, and central sterile supply also distinguish complex dynamics within the perioperative sub-processes nested in the hospital environment.

The following sections review previous literature on data design and data mining, process redesign, business process management, and perioperative performance metrics. By identifying a holistic model for evaluation, analysis, and synthesis between data and process design, this paper prescribes an a priori environment to support continuous process improvement. Following the literature review, we present our methodology, case study background, as well as the observed effects and analysis discussion of the continuous improvement and workflow balancing efforts. The conclusion addresses study implications and limitations.

LITERATURE REVIEW

First mover advantage on innovations, adaptation of better management practices, industry competition, and/or government regulations are examples of the many factors that drive process improvement. Traditionally, the hospital environment lacked similar industrial pressures beyond government
Related Content

The Adventure of Structuring Knowledge During Emergencies: Applying the Concepts “Knowledge Structuring” and “Knowledge Domination” on a Real-Life Work Situation
www.igi-global.com/article/adventure-structuring-knowledge-during-emergencies/54728?camid=4v1a

The Intelligent Data Brokerage: A Utility-Enhancing Architecture for Algorithmic Anonymity Measures
www.igi-global.com/article/the-intelligent-data-brokerage/120114?camid=4v1a
GIS Based Health Information Management through LETL, Multi Criteria Query, Analysis, Visualization
www.igi-global.com/article/gis-based-health-information-management-through-letl-multi-criteria-query-analysis-visualization/215342?camid=4v1a

Emerging Technologies for Aging in Place
www.igi-global.com/chapter/emerging-technologies-aging-place/12979?camid=4v1a