ABSTRACT

Over the past two decades, flipped learning has become a buzz word in education discussions. Flipped learning was first applied to science teaching, where lecture has traditionally been the primary means of delivering new content to students (Bergmann & Sams, 2012). While many teachers have heard the term, it is often not well understood, and its application to English language teaching has not yet been explored in depth. This chapter aims to show how the flipped learning paradigm can be applied to an EFL academic writing class. This will be supported with empirical research involving surveys of students in an EFL scientific writing class, to examine how students interact with the video content, and their perceptions of the flipped learning format. This research differs from most previous research in focusing on how students are interacting with the materials in a flipped classroom context, rather than only focusing on the learning outcomes.
INTRODUCTION

Over the past two decades, flipped learning has become somewhat of a buzz word in education discussions. Flipped learning was first applied to science teaching, where lecture has traditionally been the primary means of delivering new content to students (Bergmann & Sams, 2012). While many teachers have heard the term, it is often not well understood, and its application to English language teaching has not yet been explored in depth (Başal, 2012; Zhang & Chen, 2014).

The term flipped classroom was coined by high school chemistry teachers Jonathan Bergmann and Aaron Sams, after recording their chemistry lectures to be watched at home by students who couldn’t attend class because of sports (Bergmann & Sams, 2012). The terms flipped learning (Sams & Bergmann, 2013) and inverted classroom (Lage, Platt, & Treglia, 2000) have also been used to label this approach. In the traditional classroom, new material is presented to students in class through lectures by the teacher. Students then apply the material covered in the lectures to exercises done outside of class. In the flipped-learning approach, students generally learn new material by watching videos of the lectures at home, and then apply that material to exercises done in class (Tucker, 2012). The “flipping” is essentially that the lecture is done at home, and that the homework is done in class. Although video-recorded lectures are the well-known aspect of this approach, written materials could be used in lieu of videos (Bishop & Verleger, 2013; Talbert, 2012) the most important innovations are in the activities that can be done in the classroom in place of the traditional lectures (Bishop & Verleger, 2013; Sams & Bergmann, 2013). This allows more time for group work and teacher-student interaction in class.

Although flipped learning has been applied to and researched within science education, it has only recently been applied to second language learning (for example) (Mehring, 2014). English language teaching within the Communicative Language Teaching paradigm has long been focused on activities that would be described as “active learning”, and is not as focused on presentation of large amounts of information in lectures as science classes generally are. However, in this chapter, the benefits for both teachers and students that flipped learning can have for an ESL academic writing class will be demonstrated through descriptions of the materials used in the course, and through research into how students actually used and benefitted from those materials.
Integrating Online Tools to Motivate Young English Language Learners to Practice English Outside the Classroom
Shelly Sanchez Terrell (2013). *Explorations of Language Teaching and Learning with Computational Assistance* (pp. 184-192).
[www.igi-global.com/chapter/integrating-online-tools-motivate-young/67469?camid=4v1a](www.igi-global.com/chapter/integrating-online-tools-motivate-young/67469?camid=4v1a)

Augmented Reality Technology for Year 10 Chemistry Class: Can the Students Learn Better?
[www.igi-global.com/article/augmented-reality-technology-for-year-10-chemistry-class/219250?camid=4v1a](www.igi-global.com/article/augmented-reality-technology-for-year-10-chemistry-class/219250?camid=4v1a)