A Discrete Event-Driven Model for Electric Vehicles Predictive Charging

Azizbek Ruzmetov, University of Technology of Belfort-Montbéliard, Belfort, France
Ahmed Nait-Sidi-Moh, Laboratory of Innovative Technologies, University of Picardie Jules Verne, Saint Quentin, France
Mohamed Bakhouya, Computer Science Department, International University of Rabat, Technopolis Sala el Jadida, Morocco
Jaafar Gaber, University of Technology of Belfort-Montbéliard, Belfort, France
Marie-Ange Manier, University of Technology of Belfort-Montbéliard, Belfort, France

ABSTRACT

Very great research efforts have been made in the last decades to further develop and promote electric vehicles (EVs), their charging infrastructures, and operation techniques. However, little attention has been paid so far to the management of their charging planning, EVs assignment and mainly drivers’ assistance to get into adequate charging stations (CSs). The charging planning and EVs assignment need to be predicted taking into consideration all operating constraints of charging systems including EV characteristics, status of CSs, road traffic, etc. This paper presents a discrete event driven model for EVs predictive charging. The authors mainly focus on behavior modeling of the charging system using (max, +) algebra and Petri nets. The model is then used to anticipate maximum charging times and charging rates of EVs while respecting their various constraints.

Keywords: (Max, +) Algebra, Charging Process, Electric Vehicles, Modeling and Evaluation, Petri Nets, Prediction

1. INTRODUCTION

Many research efforts have been made in literature for developing and promoting EVs. However, little attention has been paid so far for their charging process and related infrastructures. This is due to the fact that charging process for EVs is more complex and completely different from refueling processes of vehicles that are powered by conventional power engines. Indeed, for charging management of EVs many parameters should be taken into account in order to adequately satisfy users and optimize the quality of provided services. In fact, the assignment

DOI: 10.4018/IJARAS.2015070102
of EVs to CSs takes into account several dynamic parameters such as EVs’ characteristics, the
dynamic state of CSs and traffic situation on the roads.

Certainly, the density of EVs in the road traffic becomes more and more important. However,
using and promoting this type of vehicles remain limited because of their autonomy, long
charging times, and fast discharging caused by excessive speed, roads profile and excessive use
of electric accessories. This requires sophisticated charging methods and strategies, since the task
is to suggest the adequate CS rather than just the nearest one (Ruzmetov et al., 2013) (Ruzmetov
et al., 2014). In fact, one of the most major issues is related to the uncertainty of drivers to get
a suitable CS with vacant charging points. In this paper, we continue these efforts and try to
propose a formal approach aiming to anticipate, plan and propose adequate charging solutions
for EVs. These solutions should take into account several parameters such as the location of
EVs, the remaining energy in the battery, traffic conditions, and the length of queuing in each
CS. The expression of the battery SoC of EV according to these parameters is further detailed
in (Mkahl et al., 2015).

The charging management of EVs within a CS with performance metrics such as arriving
rates of vehicles to charging points, the number of vehicles to serve, and required charging time
can be seen as discrete events and entities. In this point of view, many appropriate tools have
been developed in the literature to model and analyze such systems using discrete event systems
theory (DES). In this work, we are interested in the use of this theory for specifying and modeling
studied charging process. To do so, we focus mainly on the use of timed event graphs (TEG),
as a subclass of Petri nets (PN), combined with (max, +) algebra. These formalisms have been
considered as powerful tools for modeling and performance analysis of different types of dis-
crete event systems (Nait-Sidi-Moh et al., 2009, De Schutter & Van Den Boom, 2008, Baccelli
et al., 1992,). Using these modeling tools, we aim through this work to act appropriately on the
service time of charging tasks in order to serve maximum charging requests while satisfying the
constraints of each EV. The proposed model allows defining a predictive function of the charg-
ing process by providing useful information and suggesting adequate CSs and charging time for
each EV when it is necessary.

The reminder of this paper is structured as follows. Section 2 presents a survey of related
work. The problem statement and system description are given in Section 3. Section 4 is devoted
to the modeling and evaluation of the system. Section 5 presents a predictive charging approach
with suggested charging solutions for EVs together with obtained results. The last section con-
cludes the paper and gives some directions of future work.

2. RELATED WORK

EVs charging process and its dynamic are one of the main problems for promoting this type of
vehicles. To tackle this problem, several approaches were proposed in the literature to reduce
charging times while ensuring high performances (e.g. more autonomy and performances). For
example, in (Vandael et al., 2011) a multi-agent system has been used to model and control the
charging and discharging of plug-in hybrid electric vehicles (PHEVs). Furthermore, authors
compared the reducing imbalance costs by reactive scheduling and proactive scheduling. Simula-
tions showed that reactive scheduling is able to reduce imbalance costs by 14%, while proactive
scheduling yields to a highest imbalance cost reduction of 44%.

The authors examined in (Saéid et al., 2011) the problem of optimizing the charging pat-
tern of a PHEV. The optimization goal is to simultaneously minimize the total cost of fuel and
electricity, and the total battery health degradation over a 24h naturalistic driving cycle. The
first objective was calculated using stochastic optimization for power management, whereas the
Related Content

Innovation Strategies of New Product Development (NPD)
www.igi-global.com/article/innovation-strategies-of-new-product-development-npd/129084?camid=4v1a

Evaluation of a Regional Reactivation Project by the WSR System Methodology
www.igi-global.com/article/evaluation-regional-reactivation-project-wsr/67086?camid=4v1a

Evolutionary Growth and Control in User Tailorable Systems
www.igi-global.com/chapter/evolutionary-growth-control-user-tailorable/4213?camid=4v1a
Emergence in Agent-Based Computational Social Science: Conceptual, Formal, and Diagrammatic Analysis
www.igi-global.com/chapter/emergence-agent-based-computational-social/24190?camid=4v1a