Security in Transnational Interoperable PPDR Communications: Threats, Requirements and Architecture Solution

Ramon Ferrús, Signal Theory and Communications Department, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
Oriol Sallent, Signal Theory and Communications Department, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
Cor Verkoelen, Den Haag, Netherlands
Frank Fransen, TNO, Den Haag, Netherlands
Keld Andersen, Motorola Solutions, Glostrup, Denmark
Christian Bjerrum-Niese, Motorola Solutions, Glostrup, Denmark
Jaakko Saijonmaa, Airbus Defence & Space OY, Helsinki, Finland
Claudia Olivieri, Finmeccanica S.p.a., Genova, Italy
Michel Duits, Direktoratet for Nødkommunikasjon, Oslo, Norway
Anita Galin, MSB-Swedish Civil Contingencies Agency, Karlstad, Sweden
Franco Pangallo, Radio Mobile Department, Istituto Superiore delle Comunicazioni (ISCOM), Rome, Italy
Debora Proietti Modi, Radio Mobile Department, Istituto Superiore delle Comunicazioni (ISCOM), Rome, Italy

ABSTRACT

The relevance of cross border security operations has been identified as a priority at European level for a long time. A European network where Public Protection and Disaster Relief (PPDR) forces share communications processes and a legal framework would greatly enforce response to disaster recovery and security against crime. Nevertheless, uncertainty on costs, timescale and functionalities have slowed down the interconnection of national PPDR networks and limited the transnational cooperation of their PPDR forces so far. Currently, the European research project ISITEP is aimed at developing the legal, operational and technical framework to achieve a cost effective solution for PPDR interoperability across European countries. Inter alia, ISITEP project is specifying a new Inter-System-Interface (ISI) for the interconnection of current TETRA and TETRAPOL networks through Internet Protocol (IP) connectivity. This approach turns communications security as a central aspect. In this context, this paper describes the framework and methodology defined to carry out the development of the security requirements for the interconnection of PPDR networks via the new IP ISI and provides a discussion on the undertaken security risk and vulnerability analysis. Furthermore, an overview of the designed security architecture solution for network interconnection is provided.

KEYWORDS

Emergency Services Communications, Inter-System Interconnection, Public Safety Communications, Risk, Security Requirements, TETRA, TETRAPOL, Threat, Vulnerability Analysis
1. INTRODUCTION

The Public Protection and Disaster Relief (PPDR) sector brings essential value to society by creating a stable and secure environment to maintain law and order and to protect the life and values of citizens. PPDR services such as law enforcement, firefighting, emergency medical services and disaster recovery services are pillars of our society organisation. The most important part of the PPDR work is done in the field. Therefore, radio communications are extremely important to PPDR organizations to the extent that PPDR communications are highly dependent upon it. Indeed, at times, radio communication is the only form of communications available (Baldini, Ferrús, Sallent, Hirst, Delmas & Pisz, 2012).

In Europe, most countries have deployed national PPDR networks based mainly on TETRA and TETRAPOL technologies to serve the communications needs of the diverse PPDR organisations established at national level (Forge, Horvitz & Blackman, 2014; Becchetti, Frosali & Lezaack, 2013). The use of a single, shared PPDR network at national level facilitates the cooperation between the diverse national PPDR agencies that can be provisioned with the proper coordination talk groups. However, transnational cooperation of PPDR agencies across European Union (EU) member states is still not solved as of today, being one of the reasons the lack of interconnection between the national PPDR networks in different countries. This lack of interconnection prevents the support of roaming services (commonly called migration services in PPDR terminology) so that PPDR teams displaced to a foreign country cannot keep using their communications equipment in the foreign area. The growth of international crime requires joint police operations in the field in areas like cross-border pursuit of criminals, cross-border patrols and controls, etc. The need of cooperation is also growing in the last decade in natural calamities (e.g. flooding, earthquakes), disasters (e.g. bomb attacks, aircraft crashes) and generally for injured care and transportation, firefighting and support for civil protection. Since national resources are limited, and time is critical in disaster relief, international cooperation enables a greater effectiveness. Investments needed to achieve transnational interoperability may be well repaid by the reduction of casualties and damages. In this context, the relevance of cross border security operations is already acknowledged at European level and identified as a priority (Schengen Agreements). In addition, according to the article 222 of the Treaty of Lisbon (“mutual solidarity”), the EU shall mobilize member states resources to assist other member states in case of terrorist attacks or in case of natural/man-made disasters. Specific groups of countries (e.g. France-Switzerland, Norway-Sweden, Sweden-Germany, Belgium-Netherlands) are cooperating to address communications interoperability for PPDR cross-border operations (Becchetti, Frosali & Lezaack, 2013). Nevertheless, without a harmonised international solution, interoperability will be possible only in localised areas, thus vanishing the benefits of an extensive cooperation. In addition, there is a growing demand of standard interoperability solutions by industry, since new international tenders require multivendor interoperability to avoid single source risks.

In this context, the European research project ISITEP (ISITEP Project, 2013) is aimed at developing standard operational procedures, technology and legal agreements to achieve a cost effective solution for PPDR interoperability across European countries. ISITEP will demonstrate full radio interface migration for PPDR resources in diverse scenarios such as Norway-Sweden border, Germany-Belgium-Holland border and Swiss-French border. One of the key outputs expected from the ISITEP project is a new Inter-System-Interface (ISI) interface for the interconnection of PPDR networks using an Internet Protocol (IP)-based transport network. The new interface, referred to as IP ISI, is conceived as an evolution of the current ETSI TETRA ISI standard specification (ETSI EN 300 392-3-1, 2010), which is based on circuit-switched technology. While the ultimate goal of the ISITEP project by pursuing the development of the IP ISI is to facilitate the interconnection of current narrowband PPDR networks, the consolidation of such IP ISI is also expected to facilitate the integration of those networks with the forthcoming all-IP PPDR service delivery platforms. Indeed, the new IP ISI protocol is built upon the Session Initiation Protocol (SIP), which is the currently most
Semaphore Based Data Aggregation and Similarity Findings for Underwater Wireless Sensor Networks

An Artificial Bee Colony Algorithm for Detecting Distributed Predicates
[www.igi-global.com/article/an-artificial-bee-colony-algorithm-for-detecting-distributed-predicates/207692?camid=4v1a](www.igi-global.com/article/an-artificial-bee-colony-algorithm-for-detecting-distributed-predicates/207692?camid=4v1a)