Chapter 29

In$_2$X$_3$ (X=S, Se, Te)

Semiconductor Thin Films: Fabrication, Properties, and Applications

Mahieddine Emziane
Masdar Institute of Science and Technology, UAE

Rahana Yoosuf
Masdar Institute of Science and Technology, UAE

ABSTRACT

Indium chalcogenide thin film semiconductor compounds In$_2$X$_3$ (with X being a chalcogen atom, i.e., S, Se, or Te) are important materials in many current technological applications such as solar cells, microbatteries, memory devices, etc. This chapter reviews the recent progress in In$_2$X$_3$ (X = S, Se, or Te) thin film research and development, with a particular attention paid to their growth and processing methods and parameters, and the effects that these have on the films microstructure. The intimate relationship between their fabrication conditions and the resulting physico-chemical and functional properties is discussed. Finally, results pertaining to the fabrication and characterization of these thin film materials, as well as the main devices and applications based on them are also highlighted and discussed in this chapter.

INTRODUCTION

Remarkable advances have taken place during the past few decades in semiconductor materials and devices. The semiconductor compounds of In$_2$X$_3$ family, where X is S, Se or Te have attracted particular interest in recent years due to their promising technological applications including a wide variety of devices. Among the important In$_2$X$_3$ devices that have been developed are solar cells (Yu et al, 1998), dry cells (Dalas & Kobotiatis, 1993), photochemical cells (Hara et al, 2000), solid state batteries (Julien et al, 1985), phase change memory devices (Lee & Kang, 2005; Lee & Kim, 2005; Hirohata et al, 2006), thin film strain gauge (Desai et al, 2005a), gas sensors (Desai, et al, 2005b), etc. Some In$_2$X$_3$ compounds can be used in Schottky diodes, capacitors, heterojunctions, and micro batteries (Kobbi, B., et al, 2001),

DOI: 10.4018/978-1-5225-1671-2.ch029
In$2X_3$ (X=S, Se, Te) Semiconductor Thin Films

and they also have a potential application as passivating layer for III-V semiconductor devices (Barron 1997). Many of the devices based on In_2X_3 have already found their way into industry.

A number of books, book chapters, and topical reviews are dedicated to semiconductor compounds such as II-VI, III-V and group IV (Adachi, 2005; Ahrenkiel, 1993; Chu & Chu, 1995; Shay & Wernick, 1975). However there is no review on In_2X_3 semiconductor compounds available in the literature. This article reviews the status of research on In_2S_3, In_2Se_3, and In_2Te_3 thin films, and focuses on their fabrication methods and functional properties. It also summarizes the recent advances in their relevant applications in many devices.

The interest in In_2S_3 thin films has increased during the last decade or so because of the high potential demonstrated by this material. With optimal physical properties, this material can meet the requirements for use as a window material or a buffer layer for photovoltaic device structures (Barreau et al, 2003). In_2S_3 can be used as an effective replacement for CdS in Cu(In,Ga)Se$_2$ (CIGS) based solar cells (Spiering et al, 2003). Though the highest conversion efficiency in thin film solar cells has been reported for CIGS with CdS buffer layer, it is desirable to replace CdS with cadmium free buffer layers for environmental reasons (Hariskos et al, 2005; Naghavi et al, 2003a; Naghavi et al, 2003b; Sakata, 2000; Lee, et al, 2007).

Indium selenide (In_2Se_3) is another promising In_2X_3 material. In thin film form, it has valuable optical and electrical properties and is thus of interest for low-cost photovoltaic applications (Sahu, 1995; Lakshmikumar & Rastogi, 1994; Brahim-Otsmane et al, 1994; Hasehawa & Abe, 1982; Jayakrishnan et al, 2008). This is because of its high absorption coefficient as well as optimum energy band gap, suitable for solar energy conversion (Former et al, 1985; El-Sayed, 2004; Lee, et al, 2008; Berndede & Marsillac, 1997; Segure, et al, 1983; Qasrawi, 2007; Konagai et al, 1996). In_2Se_3 can also be used as a precursor for the growth of CuInSe$_2$ absorber layer (Kim et al, 2005). The hexagonal layered structure of this material allows the change of the physical properties without destroying the initial structure. This characteristic makes it feasible to use this material in batteries (Balkanski, 1998; Julien, et al, 1989).

In_2Te_3 is also drawing attention due to its photoconducting properties (Guettarri et al, 2003; Bose & De Purkayastha, 1981) and for its switching and memory effects (Balevicius et al, 1975; Balevicius et al, 1976; Afifi et al, 1996). The research and development of highly sensitive In_2Te_3 as gas detector and thin film screw gauge have attracted growing interest (Desai et al, 2005a; Afifi et al, 1995; Lakshminarayana et al, 2002; Hussein & Nagat, 1989).

FABRICATION PROCESSES

The properties of In_2X_3 thin films usually show a strong dependence on the film deposition technique and conditions as well as on the post-deposition heat treatment. The deposition method also has an impact on the overall fabrication cost.

In_2S_3 Thin Films

Deposition Methods

A wide range of methods exist for growing In_2S_3 thin films. In_2S_3 thin films are deposited using both wet and dry processes. Prominent among them are low pressure metal-organic chemical vapor deposition (MOCVD) (Horley et al, 1999), atomic layer chemical vapor deposition (ALCVD) (Spiering et
Related Content

Recent Trends, Issues, and Challenges in Water Resource Development and Global Climate Change

Use of GIS and Remote Sensing for Landslide Susceptibility Mapping
www.igi-global.com/chapter/use-of-gis-and-remote-sensing-for-landslide-susceptibility-mapping/211885?camid=4v1a

SCOR Model and the Green Supply Chain
www.igi-global.com/chapter/skor-model-and-the-green-supply-chain/141892?camid=4v1a

Swarm Intelligence Based on Remote Sensing Image Fusion: Comparison Between the Particle Swarm Optimization and the Flower Pollination Algorithm
www.igi-global.com/chapter/swarm-intelligence-based-on-remote-sensing-image-fusion/212945?camid=4v1a