INTRODUCTION

The business reengineering movement has left two lasting benefits: One is the identification of an organization as a set of processes (Davenport, 1993); the other is an emphasis on knowledge management (Davenport, 1997). The process orientation finds an expression in workflow systems. Processes have to be supported by knowledge management. Our purpose here is to provide an outline of how knowledge management relates to workflow systems.

The main source of information on workflow systems is the Workflow Management Coalition (WfMC). In 1994, the coalition published a 55-page Workflow Reference Model (available from its Web site www.wfmc.org), which establishes a common vocabulary, a description of key software components of a workflow management system, and interfaces between these components. The WfMC has been publishing an annual workflow handbook, an example being Fischer (2004). This volume contains an evaluation of the Workflow Reference Model (Hollingsworth, 2004). For a textbook with exercises refer to van der Aalst and van Hee (2002). Important pioneering work in this area was done by Schael (1998). A somewhat dated bibliography has been compiled by the ISYS group of the University of Klagenfurt (ISYS, 2000).

We start with a few definitions, based in part on the 65-page WfMC Terminology and Glossary document (also available from the WfMC Web site www.wfmc.org), and on van der Aalst and van Hee (2002). A business process is a set of linked activities that collectively realize a business objective or policy goal, and workflow is the result of automation of this process, in whole or part. A workflow comprises cases and resources. Cases are instances of the business process, and resources support the process. For example, the set of resources of an automated process that provides information about flight arrivals has to include a constantly updated database of flight data and a set of telephones. Every enquiry submitted to this system is a case.

A workflow system (WfS) manages the routing of cases through a workflow: A case “flows” from one station to another, and at each a task is performed on it. The task can be manual, automatic, or semiautomatic, but the definition of workflow as given suggests that the tasks of an ideal WfS should be automatic. It is important to realize that the ideal will not be achieved in the foreseeable future. Most WfSs of today are semiautomatic because they have to deal with unanticipated situations that only a human operator can handle. Moreover, software, the platforms on which it is implemented, and communication links can break down, requiring transfer of control to people. It is therefore important that the skills of these people be maintained by occasionally switching to a totally manual mode of operation.

The term “workflow,” which we take to be a way of writing “flow of work,” is appropriate because the cases move between workstations connected in a network. Indeed, implementation of workflows would have been difficult before computer networks became commonplace. A workflow management system (WMS) is a software package for the implementation of a WfS; adaptation of the generic WMS to the needs of a specific application turns it into a WfS for this application. This means that the WfS is also a software package. A distinction has to be made between the movement of cases between stations and the tasks performed at the stations. The movement, which is what the WfS controls, is normally fully automated: After a case has arrived at a station, the task is started automatically, or the system prompts a person to start the task; the task is then started at once, or after a delay. The delay may be due to a backup of cases or because the task is to be performed within a specified time window.

In the next section, we present a background survey, namely a discussion of processes that relate to workflows, and a discussion of information and knowledge. Then, we consider the management of knowledge in the context of workflow systems. We look to the future and offer a conclusion.

BACKGROUND SURVEY

Software Processes

In our view, the key concept of workflows is the use of software. With any software system, one has to consider: (a) the processes that create the software; (b) the
software being created, which also defines a process; (c) the capabilities needed to implement and manage these processes; and (d) the knowledge resources involved throughout. As regards (a), the software development process can be regarded as a workflow system—this follows from the insight that the software development process is itself software (Osterweil, 1987).

Having established that a WfS is essentially a software system, we need to take a closer look at software development. The software process is made up of people, tools, and procedures. The people have to possess a set of capabilities that are to allow them to understand and make full use of the tools and procedures. For software development, such capabilities are defined by the Capability Maturity Model (CMM-SW) of the Software Engineering Institute (1995), and the more recent CMMI-SW (CMMI Product Team, 2002).

Under CMM-SW there are three types of processes: (1) a generic software development process; (2) processes derived from the generic process for the development of specific applications; and (3) these application processes. In addition, there is a process that assists in the conversion of process (1) into an instance of processes (2). In our context, the WMS would correspond to type (2): a process adapted from a generic software process that takes into account the specialized needs of WfSs. However, the workflow community has been understandably more concerned with business processes than with principles of software development. As a result, WMS is an abstraction of the features of application processes. Nevertheless, the capabilities of the CMM-SW can be of great value in the determination of how best to allocate the resources of an organization in the setting up of a workflow system, and how to modify the system to deal with changing business conditions.

We should also note that an application software system may in principle be developed by a WfS, which is itself an application software system. Rus and Lindvall (2002) and Dingsøyr and Conradi (2002) discuss knowledge management in this context, but software engineering shows that it is difficult to automate all tasks. Although some business processes have been fully automated (e.g., responses to enquiries by telephone), in the software development process not much more can be automated than the transfer of the software system under development from one work group to the next, help with extraction of components from a software reuse library, and prompts that tell developers what they should be doing next.

Information and Knowledge

Three kinds of knowledge are associated with a WfS. The first assists in the setting up of the system. The second is to be accessed by the system in its regular mode of operation. The third allows the system to be adapted in response to changing business conditions. In other words, the first and third kinds relate, respectively, to the implementation and maintenance of the WfS. Since the WfS is a software system, these components are in fact knowledge about the software process. The second kind is specific to a WfS. Its management is to be our primary concern. Note that Davenport (1997) prefers the term information management. In his view, knowledge exists in the human mind and is very difficult to embed in machines. This view is shared by Nonaka and Takeuchi (1995). Based on the seminal work of Polanyi (1958), they distinguish between tacit knowledge, which is personal and hard to formalize, and explicit knowledge that can be expressed in a formal language. We agree in principle. However, the driving force for workflows is the automation of business processes. Hence, we prefer to make the following distinction between information and knowledge: Information for our purposes is embedded in machines and is interpreted (i.e., it is data provided with meaning), and knowledge is information that is being put to use. This implies that we shall refer to information bases rather than knowledge bases, but what is extracted from an information base will be referred to as knowledge. According to Levesque and Lakemeyer (2000), a knowledge base is a collection of symbolic structures representing what a knowledge-based system believes and reasons with during the operation of the system. This view strengthens our distinction between information and knowledge. For Nonaka and Takeuchi (1995), “information is a flow of messages, while knowledge is created by that very flow of information, anchored in the beliefs and commitment of its holder.” Fernandes (2000) makes this distinction: Information is obtained by deduction, knowledge by induction. As these examples show, it is difficult to make a clear distinction between information and knowledge, and sometimes we will use the terms interchangeably.

The knowledge that is to support the operation of a WfS can be grouped into five classes: databases, data warehouses, business rules, libraries of cases for case-based reasoning, and external sources. Databases have been extensively studied, and they are well understood.
Related Content

A Service Oriented Architecture for Coordination in Collaborative Environments
www.igi-global.com/article/service-oriented-architecture-coordination-collaborative/51370

From Conceptual Models to Data Models
www.igi-global.com/chapter/conceptual-models-data-models/30444

Boundary Spanning Role of the IS Development Team in Consultant-Partnered Projects: Knowledge Management Perspective
www.igi-global.com/article/boundary-spanning-role-development-team/53237

Effect of Knowledge Sharing and Supply Chain Management on Organizational Performance