Integrating Music into Math in a Virtual Reality Game: Learning Fractions

Taehyeong Lim, Florida State University, Tallahassee, FL, USA
Sungwoong Lee, Emporia State University, Emporia, KS, USA
Fengfeng Ke, Florida State University, Tallahassee, FL, USA

ABSTRACT

The purpose of this study was to investigate future teachers’ experiences and perceptions of using a virtual reality game for elementary math education. The virtual reality game was designed and developed to integrate a musical activity (beat-making) into the math learning of fractions. Five math education major students participated in this study. Participants’ perceptions, experiences, and interactions regarding the game were examined through observation, screen recording, survey, and interviews. A thematic analysis found three major themes: Transformative presentation of fractions via musical concepts, integration of music into math to enhance learner motivation, and learning-constructive game design features. The findings showed that the concept of fractions is effectively represented via beat-making in the virtual reality game. The study also illustrated that musical term clarification and adaptive, haptic manipulation are salient design features that influence game-based learning.

KEYWORDS
Game-Based Learning, Learning Game Design, Math Education, Music, Virtual Reality

INTRODUCTION

"Music lends itself well to mathematical treatment, in large part, because of all the structure inherent in music."
- Leon Harkleroad

Since video games appeared 40 years ago for the purpose of entertainment, they continue to expand in their application and delivery modes. In their review of literature, Connolly, Boyle, MacArthur, Hainey, and Boyle (2012) noted that learning and serious games have an equal market share as entertainment games. Games are regarded as a good vehicle for learning that is active, situated, and problem-based (Connolly et al., 2012). Learning outcomes of video games vary, including knowledge acquisition (De Lucia, Francese, Passero, & Tortora, 2009; Papastergiou, 2009), motivational change (Kim & Ross, 2006; Papastergiou, 2009), and social aspects such as influence of culture, self-disclosure, and communication media (Assmann & Gallenkamp, 2009).

The design of an effective video game for the purpose of learning relies on that of key game features, such as core mechanics (i.e., game actions and rules), information representation, the reward system, and game-learner interactions (Plass et al., 2013). The way in which information
is represented has critical implication on the design of content-specific learning games. According
to the principle of information representation, iconic (pictorial) form enhances the conceptual
understanding more than symbolic (textual) form in the subject matter that composes high cognitive
loads for learners with low prior knowledge, such as mathematics (Lee, Plass, & Homer, 2006; Plass
et al., 2013). In a recent effort to use an iconic form in math learning, Devlin (2013) described the
potential of connecting math and music learning. Video games can provide learners with a tangible
interface to comprehend and interact with mathematical concepts when studying piano and musical
concepts. Music accommodates math by representing its symbolic forms (e.g. addition, subtraction,
multiplication, and division) by means of musical, iconic forms (e.g. counting beats and dividing into
measures), and the immersive game environment will facilitate this process. In light of this inherent
connection between music and math, the present study explores the way a video game can be used
to teach math through musical concepts.

BACKGROUND

Inherently Integrated: Math and Music

For over two and a half thousand years, there has been much discussion on how music is associated
with math in human cognition (Southgate & Roscigno, 2009). One of the earliest discussions we are
able to identify is in the Ancient Greek age in which Pythagoras regard the world as a gathering of
ratios and proportions (Ferreira, 2002). Pythagoras reported a high correlation between musical and
mathematical concepts, such as between consonant sounds and simple number ratios, and asserted
that music and math share a common fundamental basis (Bibby, 2006).

Following Pythagoras’s early proposition regarding the relationship between math and music,
there has been continuous interdisciplinary research on the integration and relation between math
and music. A variety of studies examining musical content through mathematical metaphors and
concepts have been conducted. For example, Neuwirth (2002) described that Das wohl temperirte
Clavier, composed by Johann Sebastian Bach, is comprised of common factors across the disciplines
of music, mathematics, and science. Johann Sebastian Bach provided musicians and performers with
explicit mathematical codes in the appendix of his music sheets of Das wohl temperirte Clavier, and
suggested that they play scales and chords with the frequencies signified by the given math codes.
Based on Bach’s example, Neuwirth (2002) claimed that listeners can describe musical facts in
mathematical language.

Recent studies have discovered multiple mathematical devices in music. Studies that analyze or
discern the relation between music and math vary, including research on how sound can be displayed
via algebra (Knobloch, 2002), how musical scale concept is represented with mechanical devices
and numerical algorithms (Scimemi, 2002), the musical perception presents in formal logic (Leman,
2002), and computational models for musical sound sources is provided (De Poli & Rocchesso, 2002).
Finally, recent brain research revealed that music and math in the human brain are related from very
early in life (Burack, 2005).

One of the common concepts that underlie math and music is the part-whole concept that refers
to the relation between parts to wholes, such as subdividing beats to interpret rhythmic notation
(Rauscher & Hinton, 2006). They argued that even though specific context and problems are different,
the part-whole concept works identically in music and math. They asserted that the process of using
the part-whole concept in solving math problems (i.e. percent, decimals, and fractions) is the same
as that in “the conceptualization of rhythm” in music (Rauscher & Hinton, 2006, p. 235). They
postulated that the part-whole concept is transferable between music and math.

Patterning is another extensive mathematical device that is associated with music concepts.
Musical patterns are mathematical phenomena that comprise canon, expansion, retrograde motion,
and inversion (Hodges & Wilson, 1993). Geist, Geist, and Kuznik (2012) described the mathematical
Mitigation of Cognitive Bias with a Serious Game: Two Experiments Testing Feedback Timing and Source
www.igi-global.com/article/mitigation-of-cognitive-bias-with-a-serious-game/188613?camid=4v1a

A Comparative Analysis of Computer-Supported Learning Models and Guidelines
www.igi-global.com/chapter/comparative-analysis-computer-suported-learning/4714?camid=4v1a

Using Game Mechanics to Measure What Students Learn from Programming Games
www.igi-global.com/article/using-game-mechanics-to-measure-what-students-learn-from-programming-games/117696?camid=4v1a