Chapter 6
Semiring of Generalized Interval–Valued Intuitionistic Fuzzy Matrices

Debashree Manna
Damda Jr. High School, India

ABSTRACT

In this paper, the concept of semiring of generalized interval-valued intuitionistic fuzzy matrices are introduced and have shown that the set of GIVIFMs forms a distributive lattice. Also, prove that the GIVIFMs form an generalized interval valued intuitionistic fuzzy algebra and vector space over [0, 1]. Some properties of GIVIFMs are studied using the definition of comparability of GIVIFMs.

INTRODUCTION

The structure of this chapter is organized as follows. At first, contains the preliminaries and some backgrounds in this study. Then, define distributive lattice over GIVIFMs and some results are given. After that some algebric structure of GIVIFMs are defined followed by some properties of GIVIFMs.

DOI: 10.4018/978-1-5225-0914-1.ch006
PRELIMINARIES

Here some preliminaries, definitions of IVIFMs and GIVIFMs are recalled and presented some operations on GIVIFMs.

Definition 1

A semiring is an algebraic structure \((R,+,.)\) such that \((R,+\) is an abelian monoid (identity 0), \((R,.)\) is a monoid (identity 1). distributes over + from either side, \(r0=0r=0\) for all \(r\in R\) and \(0\neq 1\).

Definition 2

A fuzzy matrix (FM) of order \(m\times n\) is defined as \(A = \left\langle a_{ij}, a_{ij}' \right\rangle \) where \(a_{ij} \) is the membership value of the \(ij \)-element in \(A \). Let \(F_{m\times n} \) denote the set of all fuzzy matrices of order \(m\times n \). If \(m=n \), in short, we write \(F_n \), the set of all square matrices of order \(n \).

Definition 3

An intuitionistic fuzzy matrix (IFM) of order \(m\times n \) is defined as \(A = \left\langle a_{ij}, a_{ij}' \right\rangle \) where \(a_{ij} \) and \(a_{ij}' \) are the membership value and non membership value of the \(ij \)-element in \(A \) satisfying the condition \(0 < 1 \leq a_{ij} + a_{ij}' < 1 \) for all \(i,j \).

Definition 4

An interval-valued intuitionistic fuzzy matrix (IVIFM) of order \(m\times n \) is denoted by \(A \) and is defined by

\[
A = \left\langle \left[x_{ij}, [M_{A_{ij}}(x), N_{A_{ij}}(x)] \right] \right\rangle
\]

where

\[
M_{A_{ij}}(x) : x \rightarrow [I] \text{ and } N_{A_{ij}}(x) : x \rightarrow [I],
\]

\([I]\) be the set of all closed sub interval of \([0,1]\). The interval

\[
M_{A_{ij}} = [M_{A_{ij}}, M_{A_{ij}}']
\]

\(M_{A_{ij}} \) and \(M_{A_{ij}}' \)

are lower and upper membership value respectively of the \(ij \)th element of IVIFMA. Similarly the interval
Related Content

Planning Agent for Geriatric Residences
Javier Bajo, Dante I. Tapia, Sara Rodríguez and Juan M. Corchado (2009). Encyclopedia of Artificial Intelligence (pp. 1316-1322).
www.igi-global.com/chapter/planning-agent-geriatric-residences/10410?camid=4v1a

Assisting Learners to Dynamically Adjust Learning Processes by Software Agents
www.igi-global.com/chapter/assisting-learners-dynamically-adjust-learning/24259?camid=4v1a

Using Ontological Reasoning for an Adaptive E-Commerce Experience
www.igi-global.com/article/using-ontological-reasoning-adaptive-commerce/37450?camid=4v1a

Application of Fuzzy Logic for Adaptive Food Recommendation
www.igi-global.com/article/application-of-fuzzy-logic-for-adaptive-food-recommendation/179323?camid=4v1a