Toward Development of Distance Learning Environment in the Grid

Kuan-Ching Li, Providence University, Taiwan
Yin-Te Tsai, Providence University, Taiwan
Chuan-Ko Tsai, Providence University, Taiwan

ABSTRACT

In recent years, with the rapid development of communication and network technologies, distance learning has been popularized and it became one of the most well-known teaching methods, due to its practicability. Over the Internet, learners are free to access new knowledge without restrictions on time or location. However, current distance learning systems still present restrictions, such as support to interconnection of learning systems available in scalable, open, dynamic, and heterogeneous environments. In this chapter, we introduce a distance learning platform based on grid technology to support learning in distributed environments, where open source and freely available learning systems can share and exchange their learning and training contents. We have envisioned such distance learning platform in heterogeneous environment using grid technology. A prototype is designed and implemented, to demonstrate its effectiveness and friendly interaction between learner and learner resources used.

Keywords: distance learning; electronic learning; grid technology; platforms; open source

INTRODUCTION

In recent years, with the rapid development in communication and network technologies, e-learning has been popularized and become one of the most popular teaching methods in educational community. Along with the gradual improvements found in network bandwidth and quality, real-time transmission of high-quality video and audio has become possible and true reality. Because of these major transitions, conventional methods of school education have also followed this trend.

Distance learning utilizes electronic devices to assist the education or training process, taking advantage of the internet or any other communication channel to connect other devices, to deliver information and knowledge. According to Capuano, Gaeta, Laria, Orciuoli, and Ritrovato, (2003), this model of learning has many advantages with respect to traditional models:
• A better interaction between the learners and the learning resources they use, that is, the learning is not passive,
• Learning can happen anytime and anywhere, that is, there are not boundaries tied to time and place,
• Tutors, or learners themselves, are able to monitor the progress and to customize the learning experience basing on learner skills and preferences.

Unfortunately, there are drawbacks related to current learning solutions. First, they are mainly focused on the content delivery. Second, current learning platforms only support a specific learning-domain and are not able to support learning in different domains (Capuano, et al. 2003; Gaeta, Ritrovato, & Salerno, 2003). Third, many e-learning platforms and systems have been developed and commercialized, though, with limitations in scalability, availability, and distribution of computing power as well as storage capabilities (IMS Global Learning Consortium, 2002).

Grid computing has emerged as an important new field, distinguished from conventional distributed computing by focusing on large-scale resource sharing. Grid technology addresses issues related to access provisioning coordinated resource sharing and problem solving in dynamic, multi-institutional virtual organizations (Foster, Kesselman, & Tuecke, 2001).

In distance learning researches, it is a crucial problem the support of existing learning systems in scalable, open, dynamic, and heterogeneous environments. The scenario is a large scale and interconnected computing environment of learning management systems, learning content management systems and virtual classroom systems of different organizations.

Linking the drawbacks presented in learning systems with the advantages grid technology offers, we present in this chapter the design and implementation of a collaborative distance learning architecture based on grid technology in heterogeneous environment. With the combination of grid technology with distance learning, it is possible to build up an effective and ubiquitous learning system with impressive potential, to share learning resources in heterogeneous and geographically distributed environments. Learners can take course of their choice from a distributed virtual content repository and have it delivered to them anytime and any place of their choice in a personalized fashion with support available as and when they need it.

The remainder of this chapter is organized as follows: In the Background section, we introduce generic learning management systems, brief concepts of grid computing and web services. In the next section, it is discussed the proposed architecture for distance learning in the Grid, while following that, the design and implementation of the prototype. Finally, conclusions and future works are presented.

BACKGROUND

E-Learning Systems

General distance learning systems have four components: People, Authoring System, Run-Time System, and Learning Management System (LMS), as shown in Figure 1. People in these systems are the learners and authors, while others may include trainers and administrators. Authors (which may be teachers or instructional designers) create content, which is stored under the control of a LMS, and typically in a database. Existing content can be updated, and it can also be exchanged with other systems (Capuano,
Related Content

A Case for Case Studies via Video-Conferencing
www.igi-global.com/chapter/case-case-studies-via-video/8590?camid=4v1a

A Comparative Study on Various Vocabulary Knowledge Scales for Predicting Vocabulary Pre-Knowledge
Di Zou, Haoran Xie, Yanghui Rao, Tak-Lam Wong, Fu Lee Wang and Qingyuan Wu (2017). International Journal of Distance Education Technologies (pp. 69-81).
www.igi-global.com/article/a-comparative-study-on-various-vocabulary-knowledge-scales-for-predicting-vocabulary-pre-knowledge/169206?camid=4v1a

Collaborative Learning: Using Group Work Concepts for Online Teaching
www.igi-global.com/chapter/collaborative-learning-using-group-work/36948?camid=4v1a
Students' Perceptions of the Laptop Program: What Factors Should be Considered Before Implementing the Program?
www.igi-global.com/article/students-perceptions-laptop-program/2287?camid=4v1a