A Framework for Collaborative Learning in Dynamic Group Environments

Kamen Kanev, Shizuoka University, Japan
Shigeo Kimura, Kanazawa University, Japan
Thomas Orr, University of Aizu, Japan

ABSTRACT

In this article, we propose a framework for Computer-Supported Collaborative Learning (CSCL) employing dynamic groups, where at different stages students work independently, interact with each other in pairs, and conduct joint work in larger groups with varying numbers of participants. A Dynamic Group Environment for Collaborative Learning (DGE/CL) supports students in making informed and intelligent choices about how, when, and with whom to collaborate. This is a face-to-face collaborative environment, where all students are in the same room, can move freely around and interact with each other while using digitally enhanced printed materials with direct point-and-click functionality. Flexible and efficient support for dynamic group management is ensured through the adopted Cluster Pattern Interface (CLUSPI) technology, which, while preserving the original touch-and-feel of printed educational materials, supports additional affordances and allows employment of new, non-traditional paper-based interactions.

Keywords: cluster pattern interface; CLUSPI; collaborative learning; direct point-and-click functionality; dynamic groups; interactive printed documents

INTRODUCTION

Collaborative learning is a term denoting a multiplicity of educational approaches that stimulate learners to work closely together in joint intellectual efforts. Over the last half-century, collaborative learning has quickly turned into a strong promoter of groupwork.
in educational institutions at all levels (Gamson, 1994).

Small groups with positive interdependence, where students work together to maximize personal and partner learning, have been traditionally used in cooperative learning. However, as discussed by Curtis (2001), cooperative learning has mostly dealt with tasks that are divisible into more or less independent subtasks, where cooperating parties work in parallel to process individual subtasks in an autonomous, independent way. In cooperative learning, the original task is thus solved by simply solving multiple subtasks in parallel.

Collaborative learning, on the other hand, is pertinent to situations where a joint solution to a problem is built synchronously and interactively, which implies discussions between the collaborating parties in the process of task engagement. As indicated by Pressley & McCormic (1995), this yields significant cognitive benefits since interactions and discussions among students have notable positive effects on their learning aptitude. In collaborative learning, participants brainstorm, share information, and learn from each other so their combined collaborative achievement considerably surpasses the simple sum of individual contributions.

Learner groups and groupwork play a central role, both in cooperative and in collaborative learning and attract significant research interest, especially when combined with instructional use of new and emerging educational technologies. In this context, Johnson & Johnson (1996) identify formal cooperative learning, informal cooperative learning, base groups and academic controversies as four major types of cooperative learning. Collaborative models, on the other hand, are classified into seven types by Hadwin et al. (2006), based on their group size, temporal limitations, applied representations and collaborative roles.

Our research reported in this paper falls in the domain of Computer-Supported Collaborative Learning (CSCL), although support of cooperative learning, based on the methods that we develop is also possible. The central idea of our approach is to build an educational environment based on truly dynamic groups of learners. This is a challenging task, since traditional group management techniques when applied to dynamic groups incur too high a burden on the instructor and make implementations impractical. The viability of our idea and its practical implementation naturally depends on technical innovations and recent technological advancements. Our research addresses this issue by proposing a roadmap for the design and implementation of a CSCL system based on the innovative Cluster Pattern Interface (CLUSPI®) technology (Kanev & Kimura, 2005; Kanev & Kimura, 2006) that provides flexible and efficient support for dynamic group management.
Related Content

ICTs and Indigenous Languages as Agents for the Actualization of Millennium Development Goals in Nigeria
[www.igi-global.com/article/icts-indigenous-languages-agents-actualization/77379?camid=4v1a](www.igi-global.com/article/icts-indigenous-languages-agents-actualization/77379?camid=4v1a)

Late Departures from Paper-Based to Supported Networked Learning in South Africa: Lessons Learned
Illasha Kok, Petra Bester and Hennie Esterhuizen (2018). *International Journal of Distance Education Technologies* (pp. 56-75).
[www.igi-global.com/article/late-departures-from-paper-based-to-supported-networked-learning-in-south-africa/192073?camid=4v1a](www.igi-global.com/article/late-departures-from-paper-based-to-supported-networked-learning-in-south-africa/192073?camid=4v1a)
A Design of Realtime and Interactive Distance Education Environment
Aiguo He, GuoZhen Zhang and Zixue Cheng (2004). *International Journal of Distance Education Technologies* (pp. 1-12).
[www.igi-global.com/article/design-realtime-interactive-distance-education/1627?camid=4v1a](www.igi-global.com/article/design-realtime-interactive-distance-education/1627?camid=4v1a)

Analyzing Learning Patterns Based on Log Data from Digital Textbooks
Kousuke Mouri, Zhuo Ren, Noriko Uosaki and Chengjiu Yin (2019). *International Journal of Distance Education Technologies* (pp. 1-14).
[www.igi-global.com/article/analyzing-learning-patterns-based-on-log-data-from-digital-textbooks/217491?camid=4v1a](www.igi-global.com/article/analyzing-learning-patterns-based-on-log-data-from-digital-textbooks/217491?camid=4v1a)