Chapter 1
Empowering High-Needs Students With Problem-Based Learning Through Mobile Technology

Jessica Herring
Benton Public Schools, USA

ABSTRACT
With nearly ubiquitous access to mobile technology in the classroom, differentiation can become more seamless and student-driven, and students can focus on solving problems and developing life skills rather than recalling and regurgitating content-focused material. The cognitive focus of the classroom shifts from the lower levels of Bloom’s Taxonomy to the highest levels of analysis and synthesis, as students are asked to create, improve, revise, and design. Implementing this model of problem-based learning can be transformational in the classroom; however, high-needs students struggle with the challenge at first. High-needs students are often asked to complete the lowest cognitive tasks. While they may be exhilarated by the challenge of problem-based learning, they may also struggle to improve and revise because of the stigma of failure they have experienced in previous academic endeavors.
INTRODUCTION

One thing that drew me to public education as an undergraduate student, more than anything else, was the idea that every child in America is entitled to a free, appropriate public education. The piece of me that is concerned with equity and social justice yearned to be a part of this system. As an undergraduate student, I wanted to ensure that my students would, indeed, enjoy an appropriate education in my classroom. The problem with this free public system is that it has, for many years, followed the factory model, and it is slow to change. This style of education is not appropriate for every child. The public education system was founded on the hope of creating an informed electorate, a strong citizenship; and in many respects, it does this. But following a factory model only works if every student needs the same “parts,” and research has shown that to simply not be the case.

A factory assembly line pieces together a final product more efficiently than crafting something by hand because every product is made of essentially the same parts with few variations. A car, for example, is basically the same as every other car on the line; it just might have a slightly different interior or a different exterior color. Children are far more complex than that. Every brain is different; every home life is different; every outcome is different for every child. Simply put, the factory model of education is ineffective because every input and output is unique. You cannot use the same “parts” for each child. For example, readiness to read happens at different points in time for different readers, and all readers develop differently (Schwarz, 2015). Not only do we see a need for differentiation based on students’ academic readiness, but the need for differentiation based on culturally responsive teaching approaches has also been noted in “the number of students from varied economic and cultural backgrounds and achievement levels who become disen-chanted with learning because school has failed to connect with them as individual learners” (Tomlinson, 2005). We are failing our students when we do not see them as unique learners.

Coming to this realization creates a problem for educators. If a one-size-fits-all model is ineffective, how does we educate that many millions of children efficiently? The answer lies in a focus on skills over content and on empowerment over rote task completion. Appropriate curriculum can increase the academic achievement and engagement of all learners by recognizing the natural variability of learners – not just those with special needs (Glass, Meyer, & Rose, 2013). With nearly ubiquitous access to mobile technology in the classroom, differentiation can become more seamless and student-driven, and students can focus on solving problems and developing life skills rather than recalling and regurgitating content-focused material. Within this focus, content can be embedded and will be more relevant and authentic to the learner. The cognitive focus of the classroom shifts from the lower levels of
School in a Box in Low Resource Primary School in Mozambique: Practical Application of Zone of Proximal Development in Teacher Training with Mobile Technology

How Biomedical Science Students Use Their Mobile Devices for Learning
[www.igi-global.com/article/how-biomedical-science-students-use-their-mobile-devices-for-learning/227716?camid=4v1a](www.igi-global.com/article/how-biomedical-science-students-use-their-mobile-devices-for-learning/227716?camid=4v1a)