Chapter 6
The BioDynaMo Project: Experience Report

Roman Bauer
Newcastle University, UK

Lukas Breitwieser
CERN openlab, Switzerland

Alberto Di Meglio
CERN openlab, Switzerland

Leonard Johard
Innopolis University, Russia

Marcus Kaiser
Newcastle University, UK

Marco Manca
CERN openlab, Switzerland

Manuel Mazzara
Innopolis University, Russia

Fons Rademakers
CERN openlab, Switzerland

Max Talanov
Kazan Federal University, Russia

Alexander Dmitrievich Tchitchigin
Innopolis University, Russia

ABSTRACT

Computer simulations have become a very powerful tool for scientific research. Given the vast complexity that comes with many open scientific questions, a purely analytical or experimental approach is often not viable. For example, biological systems comprise an extremely complex organization and heterogeneous interactions across different spatial and temporal scales. In order to facilitate research on such problems, the BioDynaMo project aims at a general platform for computer simulations for biological research. Since scientific investigations require extensive computer resources, this platform should be executable on hybrid cloud computing systems, allowing for the efficient use of state-of-the-art computing technology.


Copyright ©2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
This chapter describes challenges during the early stages of the software development process. In particular, we describe issues regarding the implementation and the highly interdisciplinary as well as international nature of the collaboration. Moreover, we explain the methodologies, the approach, and the lessons learned by the team during these first stages.

INTRODUCTION

Most laboratories in computational biology develop their own custom software to carry out a specific simulation. These applications are monolithic, difficult to extend, and usually do not scale. Consequently, a lot of resources are spent in developing functionality that has already been created elsewhere. The BioDynaMo project has been started to close the gap between very specialized applications and highly scalable systems to give life scientists access to the rapidly growing computational resources.

Our project started as a code modernization initiative based on the simulation software for neuronal development Cx3D (Zubler & Rodney, 2009). Cx3D is a tool that can generate sophisticated structures based on simple rules defined by the computational scientist. Although Cx3D has a very compact code base (15 kLOC), it can perform complex simulations like “cortical lamination”. However, the absence of modern software development practices such as automated tests and thus continuous integration, coding standards, and code reviews prohibits a sustainable development process.

The multidisciplinary nature of this initiative requires expertise from different backgrounds. In comparison with other simulation packages, this poses additional challenges in managing diverse collaborators, aligning project members, and defining unique selling propositions.

Aiming at a platform that will be used by a great number of researchers simulating large scale systems, software errors will have a huge impact. Therefore, we give an overview about software verification, different approaches, and why it has great significance for this project.

CODE MODERNIZATION

High performance and high scalability are the prerequisites to address ambitious research questions like modeling epilepsy. Our efforts in code modernization were driven by the goal to remove unnecessary overhead and update the software design to tap the unused potential caused by the paradigm shift to multi- and many-core systems. Prior to 2004, since performance was clock speed driven, buying a proces-
Related Content

Spiking Reflective Processing Model for Stress-Inspired Adaptive Robot Partner Applications
[www.igi-global.com/article/spiking-reflective-processing-model-for-stress-inspired-adaptive-robot-partner-applications/182579?camid=4v1a](www.igi-global.com/article/spiking-reflective-processing-model-for-stress-inspired-adaptive-robot-partner-applications/182579?camid=4v1a)

Intelligent Technique to Identify Epilepsy Using Fuzzy Firefly System for Brain Signal Processing
[www.igi-global.com/chapter/intelligent-technique-to-identify-epilepsy-using-fuzzy-firefly-system-for-brain-signal-processing/187697?camid=4v1a](www.igi-global.com/chapter/intelligent-technique-to-identify-epilepsy-using-fuzzy-firefly-system-for-brain-signal-processing/187697?camid=4v1a)
Genetic Programming Using a Turing-Complete Representation: Recurrent Network Consisting of Trees
Taro Yabuki and Hitoshi Iba (2005). Recent Developments in Biologically Inspired Computing (pp. 61-81).
www.igi-global.com/chapter/genetic-programming-using-turing-complete/28324?camid=4v1a

An Object-Oriented Framework for Rapid Genetic Algorithm Development
www.igi-global.com/chapter/object-oriented-framework-rapid-genetic/21155?camid=4v1a