Using Second Life in an English Course:
How does the Technology Affect Participation?

Airong Wang, Mid Sweden University, Sundsvall, Sweden

ABSTRACT
This paper examines how technology affects participation in an English course in Second Life. Second Life-specific affordances, i.e. voice-morphing and sound isolated parcels, were used in this course. The data set consists of approximately 33 hours of audio recordings and chat logs of 8315 words. In audio, 10.8% of the course time deals with technological challenges, while in chat, 69.2% of the words concern technology. The types of technological challenges interfering with participation involve software complexity, unreliable functionality of SL, as well as hardware and connectivity issues. To deal with these problems, participants were assisted by pedagogical facilitators, technological facilitators, and SL-experienced peers. Based on the analysis of the challenges outlined above, this paper provides recommendations for language practitioners, focusing primarily on the course, participant, and program levels.

KEYWORDS
Affordances, English course, Participation, Second Life, Technology

INTRODUCTION
Three-dimensional (3D) virtual worlds have made a special contribution to language education. Among the different 3D virtual worlds (e.g. World of Warcraft, Quest Atlantis, OpenSim), Second Life (SL) is the dominant one applied to language education (Gamage, Tretiakov, & Crump, 2011, p. 2407). There have been a number of studies that implement foreign language teaching in this complex environment. For example, Zheng (2012) studies negotiation among Chinese language learners who use resources in SL and Chinese signs to participate in problem-solving activities. Peterson (2012) examines EFL learners’ engagement in SL interactions, their attitudes towards using SL, and how SL facilitates their language output. It has been reported that learning a foreign language in SL is engaging, which, in turn, motivates student participation (Wehner, Gump, & Downey, 2011; Peterson, 2012; Hsu, 2015). Participation in this type of environment means that ‘students not only listen and observe, but also contribute (in speech, in writing or through actions) to the interaction’ (Wang, Deutschmann, & Steinvall, 2013, p. 4). When mapping factors affecting participation in 3D virtual worlds, Wang et al. (2013) emphasize the SL technology often constitutes a key factor affecting student participation.

Although active participation, regarded as a ‘prerequisite’ (p. 4) for learning a foreign language in social collaborations in SL (Wang et al., 2013), is highly dependent on the technology working as it should, previous research has only sporadically dealt with this question (e.g. Inman, Wright, & Hartman, 2010; Liou, 2011; Barr, 2013; Wang et al., 2013; Wang, 2015). More specifically, although Wang (2015) mentions the technical issues that hindered participation in an English course in SL, her focus lies on the strategies and roles the teacher used and played to solve these problems.
BACKGROUND

It has been suggested that technology adoption depends on the complexity of a technology set against the perceived advantages the technology may bring (Rogers, 2003; Venkatesh, Morris, Davis, & Davis, 2003). A technology that is easy to understand and to use is adopted more rapidly than a technology that requires ‘new skills and understandings’ (Rogers, 2003, p. 16). However, a complex technology may be acceptable when its use is associated with many perceived advantages. According to Nielsen’s (1993) model of system acceptability, three attributes concerning the practical acceptability of a system are important, namely: compatibility, reliability, and usability. Compatibility mainly addresses whether a system is compatible with other existing systems, and reliability concerns whether a system is reliable. Usability is decided by how efficient users can use the system, and whether the system is easy to use and to remember so that users make few errors in using it. As these three attributes constitute the basic criteria for evaluating a technology, they will be used to analyze participation in SL in the course under investigation.

In the following sections, the attributes of SL to language education, and the technical complexity and requirements of SL are presented.

The Learning Environment SL

SL is an Internet-based 3D virtual world launched by Linden Lab in 2003 with audio integrated in 2007. SL offers avatars that can be modified by users. Avatars in SL can perform some actions, such as running, walking, sitting, or flying; they can also teleport to different in-world geographical regions (called islands) by a simple click on the teleport button. Furthermore, SL avatars can share digital artifacts, such as notecards (digital documents used to save detailed information), and manipulate in-world objects by, for instance, building a virtual classroom or uploading a PowerPoint to a virtual screen.

SL affords multiple communication modes. The synchronous audio communication mode includes public audio, group audio, and private audio. The proximity requirement for using the public audio is 60 virtual in-world meters, while no proximity requirements exist for the group and private audio (Wigham & Chanier, 2013, p. 76). Apart from these free audio tools, SL also offers a purchasable voice-morphing tool by which a feminine voice can be morphed into a masculine voice, and vice versa. Therefore, there is potential for exploring gender in SL to raise language learners’ awareness of gender issues, especially in the sociolinguistics context. The text chat communication mode consists of multidirectional synchronous local and group chat, as well as asynchronous and synchronous instant messaging. The public audio and the local chat are open to avatars within a certain in-world distance (usually within 20 meters for the local chat), whereas the group audio and chat are only available to the members of that group. Private audio and chat can only be used between two avatars. SL also provides limited non-verbal communication. This is either generated by users choosing an action deliberately, such as ‘orienting their avatar and positioning their avatar with respect to others’ (Wigham & Chanier, 2013, p. 67), or it may be predefined by the program, for example, an avatar is set automatically to the posture of falling asleep after remaining inactive in the audio or chat communication for several minutes. There are also a number of pre-programmed gestures, such as laughing and crying, which users can activate by clicking options on a list. The synchronous audio and chat are the primary communication modes in SL (Henderson, Huang, Grant, & Henderson, 2009, p. 464).
Language Teaching in 3D Virtual Worlds with Machinima: Reflecting on an Online Machinima Teacher Training Course
www.igi-global.com/article/language-teaching-in-3d-virtual-worlds-with-machinima/209397?camid=4v1a

Teacher Professional Development Using Mobile Technologies in a Large-Scale Project: Lessons Learned from Bangladesh
www.igi-global.com/article/teacher-professional-development-using-mobile/74710?camid=4v1a