Step Towards Pervasive Technology Assessment in Intensive Medicine

Filipe Portela, Universidade do Minho, Braga, Portugal
Manuel Filipe Santos, Universidade do Minho, Braga, Portugal
José Machado, Universidade do Minho, Braga, Portugal
António Abelha, Universidade do Minho, Braga, Portugal
Fernando Rua, Centro Hospitalar do Porto, Porto, Portugal

ABSTRACT

This paper presents the evaluation of a Pervasive Intelligent Decision Support System in Intensive Medicine making use of Technology Acceptance Model 3 (TAM3). Two rounds of questionnaires were distributed and compared. The work is based on a discursive evaluation of a method employed to assess a new and innovative technology (INTCare) using the four constructs of TAM3 and statistical metrics. The paper crosses the TAM3 constructs with INTCare features to produce a questionnaire to provide a better comprehension of the users’ intentions. The final results are essential to validate the system and understand the user sensitivity. The paper validates a method to access technologies in critical environments and shows an example of how a questionnaire can be developed based on TAM3. It also proves the viability of using this method and advises that two rounds of questionnaires should be performed if we want to have better evidence on user satisfaction.

KEYWORDS

INTCare, Intensive Care Units, Pervasive Intelligent Decision Support System, TAM3, Technology Acceptance

INTRODUCTION

The process of implementing Information Systems needs to be carefully designed and well done. The success of implementation depends primarily on the type of the system, the characteristics of the environment, the users and their willingness to change. This process should be properly evaluated before the final implementation as it is fundamental in critical areas as is Intensive Care Units (ICU). ICUs are categorized as hospital units where the patients are in a serious condition which requires continuous treatments. In this type of environments, the arrival of a new technology can be incorrectly interpreted as compromising ICU tasks. In these cases and according to the ICU professionals there is a set of barriers to overcome: as the system cannot fail, it should require a low number of human tasks. Moreover, it cannot interfere with the normal activity of the service, and it should contribute to the patient’s best care.

Pervasive Intelligent Decision Support Systems (PIDSS) in ICUs are crucial to support the decision-making process. ICUs are recognized to be critical environments where the patients are in weak conditions, usually with organ dysfunction and in a life-risk situation (Silva, Cortez, Santos, Gomes, & Neves, 2008). The adoption of PIDSS is a valuable asset for the users who want to improve their decisions (Lyerla, LeRouge, Cooke, Turpin, & Wilson, 2010; Varshney, 2009). Nowadays, this type of systems requires an environment change and an information system architecture redesign. After the system deployment, the use of a methodology to understand the usability of the PIDSS...
(intention and behaviour) by the ICU professionals (users) is fundamental. Evaluating the technology during the test phase becomes essential as this environment is complex. In the literature, there are many methodologies to assess technologies. In this case, the Technology Acceptance Model (TAM) was chosen. TAM (Chooprayoon & Fung, 2010) was developed to evaluate the Perceived Ease of USE (PEOU), Perceived Usefulness (PU), Behaviour Intention (BI) and Use Behaviour (UB). This approach was applied to a real system called INTCare which was implemented in the ICU of Centro Hospitalar do Porto (CHP) – Hospital Santo António. To support the evaluation phase, a questionnaire covering all the system features and TAM constructs was introduced. This questionnaire was sent to the INTCare users in two separate phases. The first round was essential to understand the system’s viability and user opinions. The second round was performed after resolving the issues reported in the first round. Its main goal was the final evaluation of the system.

This paper presents the study conducted, its conditions and the main result achieved in each round. The results allow understanding the degree of satisfaction denoted by the users and which features need to be improved. Beyond this introductory section, the paper contains seven sections. The second section presents the related concepts. The third section presents the TAM constructs, the questionnaire and their relation to system features. Section four presents the modifications done in the system after the first questionnaires. Section five and six present and discuss the attained results. Finally, some final conclusions are made, and the future work is described.

BACKGROUND

Intensive Care Units

Intensive Care Units (ICU) are a specialized hospital unit where intensive medicine treatments are applied. Intensive Medicine is concerned with the treatment of patients with complex problems. ICU is reserved to a patient in critical conditions with the failure of one or more organ systems according to Sequential Organ Failure Assessment (SOFA): cardiovascular, neurologic, hepatic, renal, respiratory and coagulation. The ICU professionals (nurses and physicians) work under constant pressure because they deal with human lives in critical condition.

The intensivists attest that the Decision Making Process (DMP) in this ICU is a vital process because it can save human lives. A wrong decision can result in a non-return situation to the patient. The decision needs to be made quickly and with a high level of accuracy. Currently, the decisions are made based on the human knowledge due to the low number of existing decision support systems in the ICUs. INTCare brings a new technology able to support the DMP in real-time.

INTCare

INTCare is a Pervasive Intelligent Decision Support System (PIDSS) developed for Intensive Medicine. That is an innovative system which is not comparable with the similar solutions found in the literature review. INTCare is divided into two subsystems: monitoring and decision support. The monitoring subsystem is ensured by the Electronic Nursing Record (ENR), and it is interoperable with all hospital system (Electronic Health Record, Drugs System, Laboratory system, etc.). ENR can monitor in real-time: vital signs, therapeutic plan, fluid balance, scores and other clinical records. The decision subsystem can create, automatically and in real-time, relevant knowledge to support the decision makers anywhere and anytime. This subsystem includes Data Mining models (Dietterich, 2000) for predicting clinical events. The system is also able to send clinical alerts to the intensivists. Overall, INTCare system provides:

- Patient Clinical data (Vital Signs, Fluid Balance, Patient Scales Laboratory Results);
- Critical Events tracking (SPO2, Hear Rate, Blood Pressure, Urine Output and Temperature) (Portela, Gago, Santos, Silva, & Rua, 2012);
14 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the product's webpage:

www.igi-global.com/article/step-towards-pervasive-technology-assessment-in-intensive-medicine/177299?camid=4v1

This title is available in InfoSci-Journals, InfoSci-Journal Disciplines Medicine, Healthcare, and Life Science, InfoSci-Healthcare Administration, Clinical Practice, and Bioinformatics eJournal Collection. Recommend this product to your librarian:

www.igi-global.com/e-resources/library-recommendation/?id=2

Related Content

Is Artificial Intelligence (AI) Friend or Foe to Patients in Healthcare?: On Virtues of Dynamic Consent – How to Build a Business Case for Digital Health Applications
www.igi-global.com/chapter/is-artificial-intelligence-ai-friend-or-foe-to-patients-in-healthcare/192728?camid=4v1a

Health Systems Simulation
www.igi-global.com/chapter/health-systems-simulation/12996?camid=4v1a
Applying Social Aspects in Home Telecare Design to Improve the Safety of Users and Quality of Service
Lawrence Chidzambwa (2014). *Handbook of Research on Patient Safety and Quality Care through Health Informatics* (pp. 250-274).

The Role of Telemedicine in Paediatric Cardiology
Brian A. McCrossan and Frank A. Casey (2013). *Telehealth Networks for Hospital Services: New Methodologies* (pp. 44-88).
[www.igi-global.com/chapter/role-telemedicine-paediatric-cardiology/74641?camid=4v1a](www.igi-global.com/chapter/role-telemedicine-paediatric-cardiology/74641?camid=4v1a)