The Evolution of Comorbidities in Hospital Administrative Databases: A 15-Year Analysis

Alberto Freitas, Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal and CINTESIS - Center for Health Technology and Services Research, Portugal
Isabel Garcia Lema, Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal and CINTESIS - Center for Health Technology and Services Research, Portugal
Altamiro Costa-Pereira, Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal and CINTESIS - Center for Health Technology and Services Research, Portugal

ABSTRACT

The analysis of inpatient comorbidities is important for hospital management, epidemiological studies, and health services research and planning. This paper aims to study the evolution of coded comorbidities in a nationwide administrative database. Specifically, data from Portuguese hospitals over the period 2000-2014 was used. Secondary diagnoses, coded with ICD-9-CM, were used to identify comorbidities in 9,613,563 inpatient episodes, using both the Elixhauser and the Charlson/Deyo methods. A description of comorbidities evolution over years, including an analysis of the associated principal diagnosis, was carried out. Results clearly evidence a positive association between the number of secondary diagnoses and coded comorbidities. It can be argued that the increased number of comorbidities over time is mostly related to an increase in the quality of coded data, and not so much to an increase in the severity of treated patients. Data analysts, researchers and decision makers should be alert to possible data quality bias, such as completeness, when using administrative databases.

KEYWORDS

Administrative Data, Coding and Classification, Comorbidity, Data Quality, Hospitalizations, ICD-9-CM

INTRODUCTION

Comorbidity is a secondary diagnosis, i.e., a disease condition, other than the principal diagnosis, already present at the time patient is admitted. The presence of comorbidities may have consequences at various levels as, for instance, mortality, quality of life, utilization of health resources and treatment strategies.

Several studies showed that there is a relation between specific patient comorbidities and an increase (or decrease) in hospital costs, hospital mortality and length-of-stay (Deyo, Cherkin, & Ciol, 1992; Elixhauser, Steiner, Harris, & Coffey, 1998; Zhu & Hill, 2008). In fact, due to this association with health outcomes, the study, and assessment of comorbidities assumes particular importance for health services research, for epidemiological and clinical studies, and also for financing and health care planning.

DOI: 10.4018/IJRQEH.2017040103

Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
Comorbidities are patient preexisting conditions that should be controlled when using administrative data (Deyo et al., 1992; Kuwabara et al., 2008). In administrative databases, comorbidities can be identified using ICD-9-CM (International Classification of Diseases, Ninth Revision, Clinical Modification) codes associated with secondary diagnoses (Southern, Quan, & Ghali, 2004).

In this context, the quality and the volume of the data coded can naturally have influence in the proportion of identified comorbidity conditions. That is especially important for the study of trends or any analysis over time. Comorbidities should also be used in risk-adjustment of health outcomes (e.g., mortality) to induce, for instance, a fairer comparison between health institutions.

The study of the number of coded secondary diagnoses is critical to understand the evolution in the proportion of identified comorbidities (Iezzoni et al., 1992). This number is increasing over years, and consequently, the number of identified comorbidities is also continuously increasing. This evolution is not necessarily related to an increase in the severity of patients treated.

This paper aims to study the evolution of comorbidities over time using administrative data, and was carried out under the CUTEheart project, Comparative use of technologies for coronary heart disease, an international partnership between the Harvard Medical School and the Faculties of Medicine from the Universities of Lisbon and Porto in Portugal. This paper extends authors’ previous work (Freitas, Lema, & Costa-Pereira, 2016) with an update of the inclusion criteria and the inclusion of new analyses over a larger, updated, dataset.

Administrative Data

Administrative data (also known as billing or claims data) is routinely collected, commonly available, relatively inexpensive, and involves large amounts of data. Although with some data quality problems (Freitas et al., 2012; Peabody, Luck, Jain, Bertenthal, & Glassman, 2004), administrative data is a valuable source for measuring the quality of care. It has a standard format and can be used for many purposes, such as research or public reporting (Price, Estrada, & Thompson, 2003). This dataset typically contains demographic data (e.g., age, gender), “administrative data” (length of stay, type of admission, payer, discharge status, Diagnosis-Related Group – DRG) and ICD-9-CM codes for clinical data (diagnostics, procedures, external causes) (Iezzoni, 1997).

Comorbidity Classification Systems

Comorbidity scores are often used for epidemiological studies and health service research (de Groot, Beckerman, Lankhorst, & Bouter, 2003). These scores can be calculated using different data sources, such as ICD-9-CM data, as in the Elixhauser (1998) and Charlson indexes (Charlson, Pompei, Ales, & MacKenzie, 1987), and pharmacy claims, as in the RxRisk-V score (Fishman et al., 2003). These three examples are the most commonly used methods for measuring comorbidities. Next these methods are briefly described, with particular emphasis given to the two approaches that use administrative data (ICD-9-CM).

Charlson et al. (1987) defined a weighted index to classify comorbidity conditions associated with an increased risk of mortality. In the original definition, the index was calculated using 19 conditions with different assigned weights for each condition (1, 2, 3 or 6), considering the risk of death from each condition. For instance, ‘congestive heart failure’ had a weight of 1, ‘leukemia’ had a weight of 2, and ‘AIDS’ had a weight of 6. There are many variations of this index, including one of the most used, the Deyo et al. adaptation for use with ICD-9-CM administrative databases (Deyo et al., 1992).

The method proposed by Elixhauser et al. (1998) also used ICD-9-CM codes in the definition of a list of 30 comorbidity conditions. The performed study showed that the developed measures were associated with a remarkable increase in the length of stay, hospital charges, and hospital mortality. After that, several studies pointed out that Elixhauser method has better mortality prediction than the Charlson method (Dominick, Dudley, Coffman, & Bosworth, 2005; Southern et al., 2004).
LiveWell – Promoting Healthy Living and Wellbeing for Parkinson Patients through Social Network and ICT Training: Lessons Learnt and Best Practices
www.igi-global.com/article/livewell--promoting-healthy-living-and-wellbeing-for-parkinson-patients-through-social-network-and-ict-training/138130?camid=4v1a

Disability Determinations and Personal Health Records
www.igi-global.com/chapter/disability-determinations-personal-health-records/49948?camid=4v1a