Chapter 6
Supercritical Natural Circulation Loop: A Technology for Future Reactors

Dipankar Narayan Basu
Indian Institute of Technology Guwahati, India

Milan Krishna Singha Sarkar
Indian Institute of Technology Guwahati, India

ABSTRACT

Supercritical natural circulation loop is a compelling technology for cooling of modern nuclear reactors, which promises enhanced thermalhydraulic performance in a simple design. Being a new concept, related knowledge base is relatively thin and involves several conflicting theories and controversies. Present chapter summarizes the observation till date, starting from the very fundamentals. The phenomenon of natural circulation and suitability of supercritical medium as working fluid are discussed in details. Different methods of analyses, including analytical, simple 1-D numerical and multidimensional computational codes, as well as experimental, are elucidated. A comprehensive discussion is presented about the effect of various geometric and operating parameters on the system behavior, from both thermalhydraulic and stability point of view. Finally, a few recommendations are included about the operation of such loops and future direction of research.

INTRODUCTION

The term circulation, in engineering sense, refers to the transport of a fluid through a closed circuit. When such a transmission takes place at the absence of any designated prime mover and solely because of a favorable density gradient across the loop under the influence of a body force, it is referred to as natural circulation. Gebhart (1973) employed the term internal natural convection to describe flows arising in a body of fluid contained in a cavity or completely bounded by surfaces. The most distinctive characteristics of natural circulation systems are their high sensitivity to the operative conditions and predisposition towards instability, predominantly due to the resilient pairing between flow and tem-
Supercritical Natural Circulation Loop

Considerably lower circulation rate, in contrast to the loops with prime movers, ensures identical orders of momentum and viscous dissipations, with negligible inertial effect, and pivotal role of the prevailing body force field, commonly gravity. Accordingly, the flow field appears as an implicit function of numerous constituents encompassing geometry, boundary conditions and location, and hence is implausible to envisage without a comprehensive exploration.

Natural circulation loops (NCLs), despite the mathematical intricacy, proposes a convenient route of energy and species transport. The density differential can be accomplished either by introducing a lighter phase into the primary fluid or by modulating fluid temperature through complementary energy interactions with the surrounding in different segments of the flow path. The later contrives a proficient option of energy transport from a high-temperature source to a low-temperature sink, without them in direct contact. Warmer fluid from the source can rise to the sink owing to buoyancy, to dispense the accrued energy there, and return as a cooler medium, prepared to accumulate energy from the source again. Therefore, it is obligatory to place the sink at a higher elevation than the source to establish the favorable buoyancy field, as is shown in Figure 1, and that generally remains the only constraint for an NCL configuration. Such simplicity in construction to suit any physical silhouette and enhanced reliability due to the absence of rotating machinery have stimulated innumerable engineering innovations, ranging from gigantic power cycles, nuclear plants and automobiles, through domestic refrigerators, chemical processes and solar heaters, to miniature chip cooling, with undisputed success.

It is improbable to converge on any initiation period for commercial utilization of NCLs as heat transport systems. One of the pioneering application can be identified in early-1950s for turbine rotor cooling. Several arrangements have historically been proposed and developed with varying nature of the working medium, shape and imposed body force. A complete list of classification is shown in Figure 2. While the other factors are typical to a situation, the selection of operating fluid is generally governed by

Figure 1. Schematic representation of a generalized natural circulation loop, with sink mounted at a higher elevation than the source
25 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the product's webpage: 

www.igi-global.com/chapter/supercritical-natural-circulation-loop/180270?camid=4v1


www.igi-global.com/e-resources/library-recommendation/?id=75

Related Content

Principles, Experiments, and Numerical Studies of Supercritical Fluid Natural Circulation System
www.igi-global.com/chapter/principles-experiments-and-numerical-studies-of-supercritical-fluid-natural-circulation-system/180269?camid=4v1a

Logistic vs. W-Lambert Information in Quantum Modeling of Enzyme Kinetics
www.igi-global.com/article/logistic-lambert-information-quantum-modeling/50471?camid=4v1a

Two-D Analysis of the Thermo-Mechanical Properties of ZrO2-Based Composites
Sedigheh Salehi, Vasyl Ryukhtin, Petr Lukas, Omer Van der Biest and Jef Vleugels (2012). International Journal of Chemoinformatics and Chemical Engineering (pp. 25-38).
www.igi-global.com/article/two-analysis-thermo-mechanical-properties/63432?camid=4v1a

Analytical and Numerical Modelling of Liquid Penetration in a Closed Capillary
www.igi-global.com/chapter/analytical-and-numerical-modelling-of-liquid-penetration-in-a-closed-capillary/220371?camid=4v1a