Mapping of Areas Presenting Specific Risks to Firefighters Due to Buried Technical Networks

Amélie Grangeat, French Alternative Energies and Atomic Energy Commission (CEA), Gramat, France
Stéphane Raclot, Brigade de Sapeurs Pompier de Paris (BSPP), Paris, France
Floriane Brill, Brigade de Sapeurs Pompier de Paris (BSPP), Paris, France
Emmanuel Lapebie, French Alternative Energies and Atomic Energy Commission (CEA), Gramat, France

ABSTRACT

Vehicles or freight cars on fire below a bridge or inside a tunnel are exceptional events and imply difficult intervention conditions for firefighters. A buried technical network like high voltage electricity line, gas or steam pipeline around such a fire causes additional specifics risks. Vulnerability areas for firefighters are zones where both factors exist: a difficult incident area together with a specific risk like buried networks. They require intervention teams with specific emergency response capabilities. The paper proposes a method developed for the Paris Fire Brigade for vulnerability mapping. Results aim at improving the mobilization in allocating directly the specific responses capabilities intervention teams. Results are debated from an operational point of view. Cutting off several network lines during firefighters’ interventions may strongly affect the society. In case of simultaneous incidents in vulnerable areas, firefighters could be an early warning system and inform authorities of the risk of services disruption.

KEYWORDS

Firefighters Specific Risks, GIS Method, Territory Analysis, Vulnerability Mapping

INTRODUCTION

DEMOCRITe is a project funded by the French National Research Agency under grant agreement ANR-13-SECU-0007-01 (Lapebie, 2015). It aims at developing a software platform for the French civil security on risks analysis and risk coverage. The Paris Fire Brigade (BSPP) is one of the first engaged institutions when a disaster happens in the Paris and suburbs areas. BSPP is a partner of this project, and helps to define two main lines of research for improving the quality of their emergency services. The first one concerns common incidents: based on the BSPP feedbacks database, DEMOCRITe aims at identifying correlations between incidents and local urbanism, population characteristics and period of the day. Perspectives of this axe concern for instance the “Grand Paris” project. Future fire stations and capacities should be placed in new built areas as a function of expected incidents frequency such as to optimize risk coverage. The second research main line concerns three exceptional risks. First, terrorist bombing: a simplified and fast code is under development for estimating the consequences area of a potential bombing in an urban area. Second, a quarter fire: a modeling of fire propagation speed through several buildings is proposed, not including firefighting for the moment. This could happen with the Seine centennial flooding that threatens Paris: potable water networks could be severely damaged.
damaged and fire coverage would be difficult to assume. The third point concerns the results of this article: the mapping of territory vulnerabilities linked to technical networks. A perspective of this work concerns the modelling of cascading effects following firefighters dispatch that could require switching off one network. Three deliverables of the DEMOCRITE project have been produced and released to the Paris Fire Brigade in 2015. A first report explains the production of vulnerability maps and analyzes them network-by-network (DEMOCRITE, cartes, 2015). Secondly, an ArcGIS code for the DEMOCRITE toolbox has been developed in order to compute these maps. Another report on the methodology itself explains the structures of the different models inside the toolbox and the technical limits of this approach as well as its implementation with real data. (DEMOCRITE, méthode, 2015). This last report together with the statistics of the first report are presented here. Indeed, the method developed is easily transferable. Authors believe that it may help others firefighter services to apply it for a better knowledge of their specific risks.

Vulnerability zones for firefighters are defined as zones where both following factors exist: a complex incident area - like tunnels or bridges over roads/ railway lines - with a specific risk like buried networks. These areas require emergency teams with specific response capabilities.

By “vulnerabilities linked to technical networks” the authors mean areas where firefighters require the mobilization of external partners to secure the incident: gas, high voltage or steam operators (used in Paris area for building heating) send their emergency teams to cut off pipes or lines during the firefighters intervention. The presence of a dangerous technical network also implies to send a firefighters team with adequate capabilities. Currently the BSPP uses a decision system tools that sends the closest available team to the fire. The incorporation in this tool of the vulnerability map will propose specific additional capabilities to engage, which would lead to a gain of time. Of course, this knowledge does not enter in contradiction with the systematic field recognition of risks on incident but it is a new way to make operational decisions with GIS capacities. Risks link to aerial networks are already well managed because danger is visible. Authors are interested only in buried technical networks. A priori identification of vulnerable areas must be completed by a detailed risk assessment, for instance by asking technical operators for additional information (essential point) – for instance the depth of each network in these specific zones. Several researches on internet do not enable the authors to find any equivalent approach on specific risks mapping in anticipation for firefighters.

TYPE OF STUDIED INCIDENTS

Firefighters are careful in presence of gas, electricity or steam pipeline near of a fire for three reasons: firstly, the heat stimulus may damage the buried network and causes additional events such as explosions (gas), electric short-circuits (electric line melting) or violent steam leakages. Secondly, the use of water may cause electrocution risks around an electric buried line, or may cause a violent vaporization when cold water enters in contact with hot steam pipes. This second point concerns all fire incidents near a network. Indeed, the vulnerability map matches the buried network one. However, the first reason is not present every time: fire has to have high intensity and duration to damage buried networks. This configuration is possible when a container with combustible goods takes fire just near a non-aerial technical network – for instance buried networks or networks whose lines are following a bridge or a tunnel roof. The container could be a truck container or a freight car. This work aims at mapping all locations where such a configuration exists. The Table 1 summarizes the specific risks for firefighters in the vicinity of technical networks on a fire intervention.

Two kinds of fire incidents are studied: vehicle fire and freight car fire. This work does not make a difference between vehicles and hazardous truck - and thus between roads allowing or not the transport of hazardous goods (especially fuel) for a very practical reason: it is difficult to assess the traffic of illegal transport of such goods. The incidents studied here are exceptional events: statistically speaking, only one truck out of a billion per kilometer of tunnel is susceptible to take fire—and the only statistics found by the authors in France dates back to 1999 (AIPCR, 1999). This remark justifies
Related Content

Communication During Bushfires, Towards a Serious Game for a Serious Matter: Communication During Bushfires
www.igi-global.com/article/communication-during-bushfires-towards-a-serious-game-for-a-serious-matter/222740?camid=4v1a

Media Management in Disaster Events: A Case Study of a Japanese Earthquake
www.igi-global.com/chapter/media-management-in-disaster-events/90777?camid=4v1a
BDI vs FSM Agents in Social Simulations for Raising Awareness in Disasters: A Case Study in Melbourne Bushfires

Developing a Public Online Learning Environment for Crisis Awareness, Preparation, and Response