Chapter 6

Inquiry-Based Science Education and the Digital Research Triad

Dina Tsybulsky
Tel Aviv University, Israel & Mofet Institute, Israel

Ilya Levin
Tel Aviv University, Israel

ABSTRACT

The chapter deals with a new research field that has arisen at the intersection of scientific experiment and emerging digital technologies. The classical triad of experimental research ‘subject-instrument-object’ and its implementation in science education are in the focus of the chapter. The triad is studied in its evolution to a so-called digital triad corresponding to the experimental science of digital society. In the digital triad, each of the three components are transformed. The knowing subject - researcher is transformed to the digital scholar; the experimental instrument is transformed on the base of emerging cloud and mobile technologies; the research object comprising hybrid natural-artificial components emerges. The digital transformations of the experimental research triad and educational practices based on the digital triad are manifested in a number of pioneer inquiry-based projects analyzed in the chapter.

DOI: 10.4018/978-1-5225-2525-7.ch006

Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
INTRODUCTION

Global society has transitioned into the Digital Era; this shift represents a revolution in human history – the so-called digital revolution (Dewandre, 2011; Ess, 2015; Floridi, 2014; Turner, 2006; Yuan, 2013). This revolution relates to fundamental principles of humanity. It has changed peoples’ understanding of their place in the world, as people no longer merely consider humanity a part of the nature, but also a part of the artificial world that humans have created. The digital revolution also changed peoples’ perception of society. Digital society is a hyper-connected one, in which people may have hundreds of acquaintances living in distant parts of the planet, with whom they exchange information. Presently, moreover, people have unlimited and ubiquitous access to desirable information, which, in turn, becomes personalized and context-cognizant. Indeed, our world has become one of information abundance. This state, in contrast to the previous state of information scarcity, comprises one important characteristic of digital society (Ganascia, 2015).

Indeed, the digital era has led humanity to take on a new perspective on its surrounding environment. People are gaining an awareness of the fact that we live not only in a ‘real’ environment, but also in a virtual space. Such a ‘twofold reality’ has led to emerging technologies of augmented and mixed reality, which enable new forms of knowing the surrounding world. This phenomenon manifests another characteristic of digital society – a blurred distinction between reality and virtuality (Ess, 2015).

Within digital society, people have begun perceiving themselves as “informational organisms (inforgs), mutually connected and embedded in an informational environment (the infosphere)” (Floridi, 2014, p. 94). The concept of inforg includes not only humans but also specific informational artifacts that are able to communicate with people and even demonstrate elements of social behavior. The emerging cyber-physical systems (CPS) comprise an example of such informational artifacts, since they are hybrid systems that can be considered neither purely artificial nor purely natural. Indeed, as advanced computer-embedded systems, CPSs demonstrate one of the characteristics of digital society whereby the boundaries between people, artifacts, and nature are blurring (Ess, 2015).

Obviously, the above transformations involving such fundamental features of the human being (the emergence of the informational abundance, transforming ways of observation of the world, and a changing view on the nature of surrounding objects) could not possibly leave unchanged key components of human culture such as scientific inquiry. Needless to say, scientific experiments are changing with
24 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the product's webpage:

www.igi-global.com/chapter/inquiry-based-science-education-and-the-digital-research-triad/180863?camid=4v1


Recommend this product to your librarian:

www.igi-global.com/e-resources/library-recommendation/?id=84

Related Content

Implementation of the Chain Reaction Project in Georgia
Marika Kapanadze (2019). *Comparative Perspectives on Inquiry-Based Science Education* (pp. 70-81).
www.igi-global.com/chapter/implementation-of-the-chain-reaction-project-in-georgia/226322?camid=4v1a

Cloud-Based Continuous Formative Assessment (CFA)
Norman Herr, Marten Tippens, Mike Rivas, Virginia Oberholzer Vandergon, Matthew d'Alessio and John Reveles (2016). *Handbook of Research on Cloud-Based STEM Education for Improved Learning Outcomes* (pp. 311-342).
www.igi-global.com/chapter/cloud-based-continuous-formative-assessment-cfa/144101?camid=4v1a
A Paradigm Shift for Teachers' Professional Development Structure in Turkey: Moving from Instruction to Learning
Murat Günel, Melike Özer-Keskin and Nilay Keskin-Samanc (2016). *Innovative Professional Development Methods and Strategies for STEM Education* (pp. 52-72). [www.igi-global.com/chapter/a-paradigm-shift-for-teachers-professional-development-structure-in-turkey/139651?camid=4v1a](www.igi-global.com/chapter/a-paradigm-shift-for-teachers-professional-development-structure-in-turkey/139651?camid=4v1a)

Self-Regulated Learning as the Enabling Environment to Enhance Outcome-Based Education of Undergraduate Engineering Mathematics