Emerging Technologies:
Perspectives from Metacognitive Teachers

Victoria M. Cardullo, Auburn University, Auburn, AL, USA
Nance S. Wilson, State University of New York at Cortland, Cortland, NY, USA
Vassiliki I. Zygouris-Coe, University of Central Florida, Orlando, FL, USA

ABSTRACT

Emerging technologies enhance student learning through the explicit intentional educational design such as Active Learning Classrooms, Flipped Classrooms, Problem Based Learning, and Project Based Learning to empower students. Throughout this article, we will describe several emerging technologies that support learning for the 21st century using student-centered learning models. By means of vignettes, we model how a Metacognitive Technological Pedagogical Content Knowledge Framework (M-TPACK) supports the use of emerging technologies for active learning (Wilson, Zygouris-Coe, Cardullo, & Fong, 2013). Throughout all of the vignettes, we draw connections to the various emerging technologies and the level of integration using both Blooms Taxonomy (Bloom et al., 1956) and the SAMR Model: Substitution, Augmentation, Modification, and Redefinition (Puentedura, 2006).

KEYWORDS

Active Learning, App Smashing, Emerging Technologies, Flipped Classroom, Problem Based Learning, Project Based Learning, Second Screen

INTRODUCTION

Teaching and preparing students for learning in the 21st century is becoming increasingly more complicated. Active Learning defined as any instructional method that engages students in the learning process. Active learning requires students to think about what they are doing. The general concept of active learning is to enhance self-learning through problem solving. It often requires the development of new methods of teaching and learning thus enhancing the role of the student. It is the essential elements that focus on students’ engagement and interact with the learning process (Prince, 2004). Today’s students differ from the students our educational system was designed to teach.

The Assessment and Teaching of 21st Century Skills committee (ATC21S)\(^1\) postulate that 21st century skills are categorized into four domains: (1) ways of thinking—creativity, critical thinking, problem-solving, and decision-making and learning; (2) ways of working—communication and collaboration; (3) tools for working—information and communication technology (ICT), and information literacy; and, (4) skills for living in the world—citizenship, life and career, and personal and social responsibility.

\(^1\) DOI: 10.4018/IJICTHD.2017040101

Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
In addition, the ATC21S has also identified two skills that span across all of the aforementioned categories: (1) collaborative problem solving and (2) Information Communication Technologies (ICT). Collaborative Problem Solving (CPS) combines cognitive skills and social skills to create a framework for skills needed for the 21st century (see Figure 1).

In today’s digital age students must adapt to the emerging technologies and emerge social environments that are changing the way we collaborate and communicate. Employers are looking for more than entry level skills. They are searching for students who can work collaboratively through the problem-solving process effectively and systematically throughout collaborative problem solving (see Table 1).

An additional skill that span across all of the aforementioned categories is Information Communication Technologies (ICT) learning in digital networks. ICT requires the students to actively engage with technology to research, organize, evaluate, and communicate information. It also requires the use of digit technologies to access, manage, integrate, evaluate and create information.

Figure 1. Hierarchical design for collaborative problem solving

Table 1. Characteristics of collaborative problem solving

<table>
<thead>
<tr>
<th>Skills</th>
<th>Subskills</th>
<th>Characteristics of Collaborative Problem Solving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social Skills</td>
<td>Participation</td>
<td>Active participation, perseverance, problem solving, and communication.</td>
</tr>
<tr>
<td></td>
<td>Perspectives</td>
<td>Ability to tailor communication, acknowledge and respond to differences, modify communication skills to fit the conversation, share resources.</td>
</tr>
<tr>
<td></td>
<td>Social Regulations</td>
<td>Assumes responsibility, manages conflict, resolves differences, evaluates overall performance, and identifies groups’ strengths and weaknesses during the task.</td>
</tr>
<tr>
<td>Cognitive</td>
<td>Task Regulation</td>
<td>Systematic, efficient, successfully completing task in optimal time, engagement is well thought out.</td>
</tr>
<tr>
<td></td>
<td>Knowledge Building</td>
<td>Strong understanding of the problem, recognizes and reorganizes the problem in an attempt to find a new solution path, modifies and adapts, or alters the course of thinking.</td>
</tr>
</tbody>
</table>
Related Content

Mobile Phone Sensing in Scientific Research
www.igi-global.com/chapter/mobile-phone-sensing-in-scientific-research/130160?camid=4v1a

Rethinking Stakeholder Involvement: An Application of the Theories of Autopoiesis and Boundary Critique to IS Planning
www.igi-global.com/chapter/rethinking-stakeholder-involvement/22202?camid=4v1a
Notification Display Choice for Smartphone Users: Investigating the Impact of Notification Displays on a Typing Task
[www.igi-global.com/article/notification-display-choice-for-smartphone-users/162146?camid=4v1a](www.igi-global.com/article/notification-display-choice-for-smartphone-users/162146?camid=4v1a)

An ANN Model for Predicting the Quantity of Lead and Cadmium Ions in Industrial Wastewater