INTRODUCTION

Although gender differences in a technological world are receiving significant research attention, much of the research and practice has aimed at how society and education can impact the successes and retention of female computer science professionals. The possibility of gender issues within software, however, has received almost no attention, nor has the population of female end users. However, there is relevant foundational research suggesting that gender-related factors within a software environment that supports end-user computing may have a strong impact on how effective male and female end users can be in that environment. Thus, in this article, we summarize theory-establishing results from other domains that point toward the formation of grounded hypotheses for studying gender differences in end-user computing.
Gender and End-User Computing

relevant to computer usage. In fact, some research has shown that some software is (unintentionally) designed for males (Huff, 2002).

One reason gender HCI issues in end-user computing are important is that ignorance of gender issues has already proven to be dangerous: today’s low percentage of computer science females (Camp, 1997) has been directly attributed to the past unawareness of gender issues in computer science education and in the workforce. There is a risk that if gender HCI issues in end-user computing environments are ignored, a similar phenomenon could occur with female end users.

WHAT COULD GO WRONG?

What gender differences might matter in the design of end-user computing environments? Consider the following scenario in one particular end-user computing environment.

Imagine a female teacher engaged in preparing a spreadsheet to track her students’ scores and to calculate ways of providing students with the best grades. Part of her process of preparing her spreadsheet is to test the spreadsheet. While she is engaged in testing, the system surprises her by decorating some of the spreadsheet cells, as in Figure 1.

The surprises were intentionally placed into the software by the designers relying on a strategy for end-user computing environments called Surprise-Explain-Reward (Wilson et al., 2003). The surprise, which was intended to capture the teacher’s attention and arouse her curiosity, reveals the presence of an “information gap” (Lowenstein, 1994). In this case the system is using the surprise to interest her in assertions (Burnett et al., 2003), which she can use to guard against future errors by specifying, for example, that the value of a cell calculating a grade average should always fall between 0 and 100.

What could go wrong in surprising the user? According to Lowenstein’s information gap theory, a user needs to have a certain level of confidence in order to reach a useful level of curiosity (Lowenstein, 1994). However, given documented gender differences in computer confidence (Busch, 1995; Huff, 2002), the teacher’s level of computer confidence could interfere with the surprise’s ability to capture her interest.

Returning to our scenario, suppose for this particular user, the surprise is effective at arousing her curiosity, she looks to the object that surprised her (the assertion) for an explanation. The explanation, viewed through a tooltip, includes the semantics, possible actions she can take (regarding the assertion), and the future reward(s) of taking the action. See Figure 1.

Figure 1. A spreadsheet calculating the average of three homework scores. Assertions about the ranges and values are shown above each cell’s value. For example, on HomeWork1 there is a user-entered assertion (noted by the stick figure) of 0 to 50. The other three cells have assertions “guessed” by the Surprise-Explain-Reward strategy. Since the value in HomeWork1 is outside of the range of the assertion, a red circle notifies the user of the violation. A tooltip (lower right) shows the explanation for one of the guessed assertions.