The Use of Reusable Learning Objects to Enhance the Delivery of Veterinary Education: A Literature Review

Emily Chapman-Waterhouse, Harper Adams University, Shropshire, UK
Ayona Silva-Fletcher, Royal Veterinary College, London, UK
Kim Whittlestone, Royal Veterinary College, London, UK

ABSTRACT

The increased demand from learners in higher education to access resources flexibly has resulted in considerable development in the use of Reusable Learning Objects (RLO) via a blended learning format across the sector. This critical review sets out to identify what is currently known about RLO and how those concepts can be applied to veterinary-related degree courses. The review provides an insight into an aspect of blended learning which is currently limited in terms of published research. The effect of computer confidence, students’ choice to use and the impact on student performance are some of the variables which have been measured to date. The approach to RLO by students from different courses may vary, but prior experience of technology, alignment of content and availability of technical support are some of the key drivers for usage and reuse. A positive effect is likely to occur following RLO use because those students have adopted a process of active engagement, which the authors know can bring about a deeper approach to learning.

KEYWORDS

Blended Learning, Flexible Learning, Harper Adams University, Reusable Learning Objects, Royal Veterinary College, Veterinary Education

AN INTRODUCTION TO REUSABLE LEARNING OBJECTS IN VETERINARY EDUCATION

Reusable Learning Objects (RLO), also known as Shared Content Objects (SCO) are self-contained digital resources such as video, audio, web-pages, documents and graphics which are stored and accessed independently in support of a blended learning approach. This feature of technology enhancing learning is also shared by Open Educational Resources (OER) as defined by Clements and Pawlowski (2012). Kay and Knaack (2007) expand on this definition by saying that RLO are interactive tools which go beyond simply supporting learning, but enhance and amplify the cognitive processes of learners. As yet there is no evidence to suggest that this applies to learners within veterinary education blended learning and therefore to promote effective practice in this subject area, the authors set out to better understand why and how some students in veterinary education would choose to access web-based RLO and others choose not to and secondly, if the performance in summative assessment by students in veterinary education is affected by the introduction of web-based RLO.

DOI: 10.4018/IJMBL.2017070103

Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
REVIEW METHODOLOGY

Literature was selected firstly on the basis of its relevance to RLO, secondly in terms of the course areas from which participating students were drawn and lastly, in terms of its relevance to the enhancement of higher education. The authors searched for literature using Google Scholar and their home institution’s own search engine (FindIT@Harper) which searched EBSOHost, ScienceDirect and Wiley Online databases to obtain 21 research publications and nine sector reports. The search terms included: reusable learning object, veterinary blended learning, veterinary online learning, science reusable learning objects and sources filtered for full text copies.

In searching for papers to include, only one was found relating to Veterinary Education (Short, 2002) and another concerning Animal and Agricultural Sciences (Hoover & Marshall, 1998). Other subject areas in which studies have been undertaken in relation to RLO and reported in this review include Biology (Kay and Knaack, 2007), Chemistry (Windle et al., 2011; Kay and Knaack, 2007), Physics (Kay and Knaack, 2007; Kurilovas et al., 2011), Human Nursing (Windle et al., 2010; Keefe and Wharrad, 2012; Blake, 2010; Lymm et al., 2008), Human Anatomy (Johnson et al., 2013), Human Medicine (AAMC, 2007; Blake, 2010), Health and Social Sciences (DoH, 2011; Kirkwood, 2008; Evans, 2013; Boyle et al., 2003), Science (Littlejohn et al., 2010; Kirkwood, 2008), Business (Littlejohn et al., 2010), Maths (Kurilovas et al., 2011), Accounting (Concannon et al., 2005), Engineering (Littlejohn et al., 2010), Computer Science (Kay and Knaack, 2007) and lastly International Culture (Sandlin et al., 2014). In the main, these are STEM subjects with the majority offering insights into the medical education sphere. The sample sizes utilised in these studies, where specified, contained a minimum of 80 students, with one exception being the investigation by Kirkwood (2008) where data was collected from just ten individuals. The largest sample was associated with the study by Littlejohn et al. (2010), in which over 2,000 students participated and, while we know that the greater the sample size, the greater the chance of detecting a true treatment effect (Petrie & Watson, 2006), such a large scale study may not allow us to see the nuances of RLO use which are of interest to practitioners.

The consequence of selecting this particular area of focus, with limited availability of subject-related literature, is that the aim of this thematic review was refined to assess what is currently known about RLO and how those concepts can be applied to enhance the delivery of veterinary-related degree courses.

DOES STUDY MODE OR POINT-ON-COURSE MATTER?

The student demographic examined in these studies, where stated, concerned largely mainstream (full-time) undergraduate degree students, with the exception of the studies by Keefe and Wharrad (2012) and Evans (2013) respectively who investigated postgraduate students and Kay and Knaack (2007) who explored behaviours of secondary school pupils. In terms of the year groups (e.g. first, second, third and so on) that were examined, this was unspecified in a number of papers (Windle et al., 2010; Lymm et al., 2008; Sandlin et al., 2014; Bacsich et al., 2011; Short, 2002; Marcus, 2013; Kurilovas et al., 2011; Kurilovas et al., 2014; Hoover and Marshall, 1998). Students from a range of year groups were examined in studies by Keefe and Wharrad (2012), Blake (2010) and Boyle et al. (2003). Interestingly, Johnson et al. (2013) specifically dealt with third year Bachelor of Medicine students and Concannon et al. (2005) and Littlejohn et al. (2010) captured data from first year students only. Data collection for the latter study took place on course induction day which makes this methodology unique in terms of those studies reviewed herein. To go beyond the mainstream student demographic, the review by DoH (2011) and study by Kirkwood (2008) provide an insight.
Blending In: Moving Beyond Categories in Digitally-Mediated Learning
www.igi-global.com/chapter/blending-moving-beyond-categories-digitally/52550?camid=4v1a

Teaching Math to Deaf/Hard-of-Hearing (DHH) Children Using Mobile Games: Outcomes with Student and Teacher Perspectives
Brett E. Shelton and Mary Ann Parlin (2016). International Journal of Mobile and Blended Learning (pp. 1-17).
www.igi-global.com/article/teaching-math-to-deafhard-of-hearing-dhh-children-using-mobile-games/144291?camid=4v1a