The State-of-the-Art Technology of Currency Identification: A Comparative Study

Guangyu Wang, Auckland University of Technology, Auckland, New Zealand
Xiaotian Wu, Jinan University, Guangzhou, China & State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
WeiQi Yan, Auckland University of Technology, School of Computer and Mathematical Sciences, Auckland, New Zealand

ABSTRACT

The security issue of currency has attracted awareness from the public. Despite the development of applying various anti-counterfeit methods on currency notes, cheaters are able to produce illegal copies and circulate them in market without being detected. By reviewing related work in currency security, the focus of this paper is on conducting a comparative study of feature extraction and classification algorithms of currency notes authentication. We extract various computational features from the dataset consisting of US dollar (USD), Chinese Yuan (CNY) and New Zealand Dollar (NZD) and apply the classification algorithms to currency identification. Our contributions are to find and implement various algorithms from the existing literatures and choose the best approaches for use.

KEYWORDS
Classification, Comparative Study, Currency Security, Feature Extraction

INTRODUCTION

Currency has become a medium for trading various goods that replaces the ancient barter system. Currency is composed of three important components, namely, coins, banknotes and electronic data. The stability of currency represents a nation’s overall strength in economy. Therefore, it appears to be significant to protect security of currency’s circulations.

However, there exists currency counterfeit that influences the normal stability of currency. Cheaters are able to produce reprographic equipment to copy, scan and distribute fake banknotes that severely affects security of currency. The currency problem requires national reserve banks raise effective technical solutions to cope with them. Even if private banks have their own approaches of handling the threats from counterfeit currency, national reserve banks should officially have the authorization to centralize currency issue and policy establishment.

A counterfeiter’s primary objective is to reproduce passable reproductions and mastering security features. Security features are classified into three categories (Clarkson et al., 2009, Ishigaki & Higuchi, 2008; Illingworth & Kittler, 1988; Zhang & Rockett, 2006; Zhang et al., 2007), (a) immediately detectable through human senses, (b) hidden from normal view of human senses, detectable using basic tools, such as a magnifying glasses or Ultra Violet light, (c) intrinsic characteristics resulting from the manufacturing process and the interaction of raw materials.

DOI: 10.4018/IJDCF.2017070106

Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
As physical banknotes have obvious weaknesses, all paper-like materials are prone to wear and tear, therefore they are possibly exploited by counterfeiters for producing forged banknotes which are hardly recognized by currency examination machines and tools. Therefore, banks and cashers are using techniques such as digital image processing, machine vision and pattern recognition that effectively distinguish fake banknotes from the authentic ones (Chambers et al., 2014; Yan & Chambers, 2013; Chambers, 2013). Software is being trained to recognize specific banknotes using learned knowledge based on computable features, a banknote which does not meet the specified condition is deemed to be either counterfeit or worn-out which affects normal transactions, it will be further examined and may be removed from the circulation. Similarly, if a banknote has such an engraving and printing problem in producing time which has been found out by using the same machine vision technology, it will be disposed before it entered the circulation after manual examinations. Traditional currency recognition software is used to check print quality of new notes (Chambers et al., 2014; Yan & Chambers, 2013; Chambers, 2013). It is considered to be significant of utilizing print banknotes, quality of notes remains to be authenticated by manual inspections. Cheaters are able to reproduce the forged notes with certain security features by simulating the genuine ones. However, it is impossible for them to distribute the notes with all the security features (Gaubatz et al., 2009; Grijalva et al., 2010; Hasanuzzaman et al., 2012; Jin et al., 2008; Kersten, 2010; Nishimura, 2009; Roy et al., 2010).

Albeit there is a new kind of money which is electronic version of currency, it contains most of the basic security components which are inherited from physical banknotes. Nevertheless, as differences exist in transactions of using physical banknotes and electronic currency, the security and governance should be taken into consideration. In this paper, we will analyze features of currency by using feature extraction and classification techniques in the banknotes of USD (USA Dollar), NZD (New Zealand Dollar) and CNY (Chinese Yuan).

In this paper, we hope to investigate quantitative methods of currency authentication further, a comparative study will be conducted based on the methods illustrated in Table 1 which is based on a published survey paper (Chambers et al., 2014). By designing and implementing an experiment on these feature extraction methods and classifiers, we expect selecting an existing algorithm that performs the best in distinguishing genuine currency notes from the forgery ones. Our contribution is to conduct comparisons of banknote identification approaches and select an effective identification method from various candidate ones. In this paper, the brief introduction of feature extraction and classifiers as well as the proposed algorithms are presented in Section 2. The explanation of our dataset and the experiment process are described in Section 3. Section 4 will present the analysis of the experimental results. Finally, the conclusion of this paper will be drawn in Section 5.

**CURRENCY SECURITY COMPUTATIONS**

Digital image processing and computer vision have been employed to quality assurance of paper currency in the producing time and currency authentication in the transaction time. Usually the Bureau of Engraving and Printing of the government officially take over production of paper currency and examine the printing procedure. In real transactions, the bank and government of all countries allow cashers to use the Cash Check and Count Machines for cash verification which are granted by government. Any suspicious cashes will be reported to police for further investigations.

Our aims in this section are to investigate the algorithms that have been employed to the area of currency authentication by using those computable features in Table 1. Our goal is to automatically authenticate banknotes under a camera. By summing up the features and classifiers, this paper compares the results of experiments using these existing approaches such as CPN, SURF or Discrete Wavelet
Related Content

Spam and Advertisement: Proposing a Model for Charging Intrusion
Dionysios Politis (2009). Socioeconomic and Legal Implications of Electronic Intrusion (pp. 281-289).
www.igi-global.com/chapter/spam-advertisement-proposing-model-charging/29370?camid=4v1a

The General Theory of Crime and Computer Hacking: Low Self-Control Hackers?
www.igi-global.com/chapter/general-theory-crime-computer-hacking/61023?camid=4v1a

An Approach for Hand Vein Representation and Indexing
www.igi-global.com/article/approach-hand-vein-representation-indexing/55499?camid=4v1a
An Efficient Reversible Data Hiding Scheme for Encrypted Images
www.igi-global.com/article/an-efficient-reversible-data-hiding-scheme-for-encrypted-images/201533?camid=4v1a