Case Study 2: Using Games Based on Giant Dice and Time Restrictions to Enable Creativity When Teaching Artistic or Creative Subjects

Dan Barnard, London South Bank University, London, United Kingdom

ABSTRACT
This case study draws on some experiments I have been doing in the use of dice in the ideas generation phase of a creative project. It draws on workshops I have run with creative technology students at Goldsmiths, with a range of adults at the Counterplay Conference in Aarhus (Denmark) and the Playful Learning Conference at Manchester Metropolitan University, in workshops for museum professionals I have co-led with Rachel Briscoe and in teaching Drama and Performance students at London South Bank University.

KEYWORDS
Creative Technology, Dice, Game Based Learning, Game-Like Situation, Ideas Generation

INTRODUCTION
In this case study, I use large inflatable dice with plastic pockets that A4 sheets can slot into (see Figure 1). I normally use 2 to 3 dice, each with a different category that the project needs to take into consideration. For example, for creating urban games there might be a dice with locations, a dice with numbers of players and a dice with possible technologies. Or for devising a performance piece there might be a dice of themes, a dice of “use of space” and a dice of uses of sound or of performance style etc. They are six-sided dice, so that if I am using 3 there are 216 possible combinations.

WHAT DO DICE DO?

Dice Give Parameters
In my experience, and as Ian Bogost eloquently argues in Play Anything (2016), restrictions enable creativity rather than stifling it. When presented with an open brief, such as “devise a playful interaction for a public space” there are so many possibilities that the mind can freeze. However, when given three parameters to combine in this playful interaction, for example “devise a playful interaction using balls to take place in a park where players work in pairs” or “devise a playful interaction using motion sensors to take place in a town square where you play as an individual” then the mind sets to work thinking about how to combine these elements.

In addition to enabling creativity, the use of parameters can allow the teacher or facilitator to guide ideas towards elements they wish to explore or to resources that are available. Or it can allow her to adjust parameters to stretch or stimulate different groups. For example, when I worked with creative
technology students at Goldsmiths, the same game of creating playful interactions for public spaces involved two technology-based dice, one for “inputs” (e.g. cameras, microphones, pressure sensitive pads, buttons, phones/tablets, wearable tech) and one for “outputs” (e.g. projection, lighting, sound, things move, liquid-crystal display screen, web or text message based outputs).

Dice Make It Fun

It is hard to take throwing a big blue squishy inflatable dice too seriously. It is not something you are habituated to doing in a classroom or conference room and so it can put you into a more playful frame of mind. The suspense of waiting to see how it lands and the accompanying “oohs” and “aahs” all add to the fun. The fun of dice in the classroom is also exemplified in my favourite television series, The Wire. In Season Four Presbo finally engages his class in mathematics through the use of dice.
Related Content

Evaluating the Geography E-Learning Materials and Activities: Student and Staff Perspectives
www.igi-global.com/chapter/evaluating-geography-learning-materials-activities/9108?camid=4v1a

Factors at Play in Tertiary Curriculum Gamification
Penny de Byl (2013). *International Journal of Game-Based Learning* (pp. 1-21).
www.igi-global.com/article/factors-play-tertiary-curriculum-gamification/78304?camid=4v1a
Implementation of Learning Outcomes in Mathematics for Non-Mathematics Major by Using E-Learning
B. Divjak (2012). Teaching Mathematics Online: Emergent Technologies and Methodologies (pp. 119-140).
www.igi-global.com/chapter/implementation-learning-outcomes-mathematics-non/57936?camid=4v1a

Computer Supported Network Based Learning Environment for the Workplace
www.igi-global.com/chapter/computer-supported-network-based-learning/30613?camid=4v1a