Discrete Event Simulation in Inventory Management

Linh Nguyen Khanh Duong
Auckland University of Technology, New Zealand

Lincoln C. Wood
University of Otago, New Zealand & Curtin University, Australia

INTRODUCTION

Successful supply chain management aims to deliver the right products at the right time to the right place and in the right condition (Deniz, Scheller-Wolf, & Karaesmen, 2004). This is not a simple task, and many factors influence the success of the supply chain; perishability and substitutability characteristics of inventory are key attributes that cannot be ignored. Once produced, perishable products have a finite shelf life. When expired, they are either partially or wholly valueless. Perishability affects many industries (e.g., fresh food and chemicals). The more time that perishable inventory is in storage, the less time it is available for sale to customers. The combination of these factors often requires simulation models to be developed to understand the behavior of the system as the parameters change.

Product substitution is a possibility when considering multiple products. Research indicates that an alternative product is willingly chosen by customers if the preferred one is out of stock, and product substitution is important to companies (Chen, Feng, Keblis, & Xu, 2015). Research shows that consumer-driven substitution due to product stock-outs is common in the grocery industry (Bijvank & Vis, 2011). In a recent study, the Grocery Manufacturers of America estimated that approximately 70% of consumers who find a particular item is stocked out on the first occurrence will happily purchase another product (Grocery Manufacturers Association, 2015). van Donselaar, Van Woensel, Broekmeulen, and Fransoo (2006) analyzed these types of situations and suggested that accounting for substitution while establishing inventory control policies could lead to a reduction in waste.

Holding inventory is necessary for a firm to fulfill customer orders; however, holding inventory also incurs holding cost (e.g., providing material storage and insurance). Each product has a holding cost applied to the average inventory level over a specified period, a selling price, and a cost per unit of stock. Managers must decide on the replenishment time and replenishment quantity for each item within product subcategory, to maximize expected profits under uncertain demand while minimizing the instances of running out of inventory (i.e., a ‘stock out’).

Determining the appropriate replenishment policy that will maximize profit under probabilistic consumer demand is known as stochastic optimization. In stochastic situations, it becomes difficult to formulate models accommodating so many factors. According to Lucas, Kelton, Sánchez, Sanchez, and Anderson (2015), a discrete-event simulation methodology is suitable to capture the dynamics of this problem. Discrete-event simulation involves modeling a system and where a specific event triggers a change in the state of the system. Such simulation allows tracking of specific items of inventory (e.g., when an item ‘expires’ it would trigger an event and a change in the system state); this is a necessary precondition that makes this type of simulation more appropri-
ate than continuous simulation for the modeling
of substitutable and perishable inventory systems.
Such simulations can also be used in the evalua-
tion of new IT improvements that can be used to
improve collaboration practices over the supply
chain (Cannella, Framinan, & Barbosa-Póvoa,
2014). Simulation can incorporate stochasticity
and complexity while providing detailed output
for further analysis and optimization work.

BACKGROUND

In general, there are four types of perishable
products: food items (e.g., meat, vegetables, dairy
products, and beverages), medical/pharmaceuticals
(e.g., vaccines, blood, and drugs), plants, and
industrial/other (e.g., paint and chemicals). Each
type may have several categories, subcategories,
and product variants. For example, milk products
can be divided into powdered milk or ready-to-
drink milk products. Ready-to-drink milk products
can be further divided into yogurt or drinks; then,
by flavors and sizes.

Managers must decide the inventory level for
perishable products to ensure customers have all
desired products at the right time at minimal dis-
posal cost. Managers want to provide the highest
customer service level at the lowest cost. Some of
these costs that play a significant role in perish-
able inventory management include ordering cost,
holding cost, disposal cost and shortage/backlog
cost. Nahmias (2011) gave a comprehensive re-
view of the perishable inventory theory. There is
a two primary inventory management approaches,
periodic review (monitoring inventory levels at
fixed intervals) and continuous review (monitor-
ing inventory levels continually). Periodic review
has been widely used for a long time due to the
relative simplicity of application; it involves the
amount of inventory at a particular point in time
and reviewing the inventory on a regular basis
after that. For example, a store-person may count
the inventory once per week and then calculate
how much more inventory is required in the next
order. Contemporary approaches include vendor-
managed inventory (VMI) and collaborative
planning forecasting, and replenishment (CPFR)
processes to improve multi-tier inventory man-
agement (Alftan, Kaipia, Loikkanen, & Spens, 2015).

A single period perishable inventory model
the ‘newsvendor’ model; named for the ‘newsboy’
that would need to buy a stack of newspapers
before shifting them to another location for sale
to customers. The entrepreneurial newsvendor
had to calculate the likely number of newspapers
required; if too many were purchased, they would
be worthless at the end of the day; if too few were
purchased, they would lose potential sales (Nah-
mias, 2011). In real stochastic environments, where
newsvendor models are most useful, managers
must pay attention to planning models where there
is greater age dependency in demand, consumers
are sensitive to these factors, the products have
a short shelf-life, and there is a risk of quality

To expand market share, many producers/
distributors tend to provide more product lines,
and many retailers opt to offer new choices for
consumers by introducing new brands, more
flavors or sizes of existing products, or new
products with various attributes. Consequently,
this creates additional managerial challenges as
policies must account the effects of substitution
and perishability. In consumer-driven substitution,
the customer’s willingness to substitute during a
stock out is a major factor; in contrast, decision-
maker-driven substitution involves a managerial
decision to substitute a given product with a
different variant of the product (Broekmeulen,
Fransoo, Van Woensel, & van Donselaar, 2007).
Many of these factors may be difficult to capture
and ‘price’ in a meaningful way relative to other
factors, often requiring some judgment when de-
veloping a model that seeks to minimize a total cost
function. In contrast, many managerial situations
require consideration of a broader range of metrics
and KPIs (Cannella, Barbosa-Póvoa, Framinan, &
Relvas, 2013; Cannella et al., 2014). This would
also enable managers to include metrics that are