The Satiation of Natural Curiosity
Felix Schoeller, École des Hautes Études en Sciences Sociales, Paris, France

ABSTRACT
At the core of this essay is the idea that cognition is best described as a highly developed homeostatic device aiming to maintain a dynamic equilibrium between internal representations and changes in environmental conditions. The author emphasizes the fundamental role played by aesthetics in facilitating an accurate description of the human mind and introduce basic elements of a theory accounting for the influence of art on the cognitive system. A general bibliography is provided for the reader unfamiliar with the notions and desirous to pursue the analysis further.

KEYWORDS
Aesthetics, Cognition, Curiosity, Dynamic Equilibrium, Homeostasis, Knowledge, Pleasure
1. INTRODUCTION

Aesthetics play a crucial role in the elaboration of a science of the mind. Not only because traces of aesthetics are prevalent in any human society regardless of space or time (Klein, 1989; Eibl-Eibesfeldt, 1989), but for a much more fundamental reason, namely the fact that a truly scientific investigation into the workings of any system (whether biological or artificial) must be founded upon a study of the circumstances in which such system attains its freest action, produces its most harmonious results and reveals the conditions to which it is most adapted. Indeed, the study of art has been the object of countless debates and controversies. In the current article, we shall have no comment to make on such matters and will mainly be striving for explanatory power and logical simplicity. As for any other field of science, our principles should not only be derived from accurate observations but also find useful applications. The elements introduced here obey both conditions and have lead us to the general assumption that great art might please by satisfying one’s natural curiosity. This article is divided into three parts, each devoted to clarifying an aspect of this problem. First, we briefly review the problem of the transparency of artistic techniques, then we extend the problem further to introduce our working hypothesis. We conclude by presenting a simple mathematical model describing both internal and external variables at play.

2. ON ARTISTIC TECHNIQUES

To understand any structure, it is often useful to start by identifying a function. The best evidence that art serves a cognitive function is given by the fact that we rarely experience artistic techniques per se but rather perceive directly the content they organize coherently. Pushes and pulls of a violin bow, cuts in a narrative film, paint brushes on a canvas, all these techniques disappear behind the content they convey. This effect can be augmented or diminished by modifying certain elements of the structure (e.g., the location of hairs on the string, the distribution of cuts across time, the distribution of paint across space). In philosophy of technology, relative transparency is the term used to describe this phenomenon. Relative transparency is a specific kind of sensorial feedback necessary to the correct usage of tools (Ihde, 1979; Merleau-Ponty, 1962). Consider the simple case of hitting a nail with a hammer. In order to know where to hit with my hammer, I need to know where my hammer hits. This might appear as an evidence but it you were to build a device which could intelligently hammer things, the problem of feedback would be one of the first issue that you would need to tackle and this is not a trivial issue. The sensorial feedback which is useful for me when I am using a hammer is not that of the hammer but that of the location of the nail that I am trying to hit. In the process of hitting, my hammer thus becomes transparent so that I can be sure it is the nail I am hitting and not the finger tip of my co-worker. As a result of this, I no longer feel the hammer in my hand, I feel the nail. That is, I feel a certain quantity of resistance opposed by the nail to the hammer. Most tools become transparent in their usage. We do not experience the chalk that we are using to write on a blackboard but the resistance of the board and the amount of chalk left. We do not experience pedals when we are riding a bike but the forces of friction on the wheel and the resistance of the road. The same process is
Talking about NSA Wiretapping and Guantanamo: A Systematic Examination of the Language used by Different Networks to Report Post-9/11 Policy Dilemmas Concerning Rights

[www.igi-global.com/article/talking-about-nsa-wiretapping-and-guantanamo/153598?camid=4v1a](www.igi-global.com/article/talking-about-nsa-wiretapping-and-guantanamo/153598?camid=4v1a)