Operationalising Sustainability within Smart Cities: Towards an Online Sustainability Indicator Tool

Conor Mark Dowling, Future Analytics, Dublin, Ireland
Stephen Diarmuid Walsh, Future Analytics, Dublin, Ireland
Stephen M Purcell, Future Analytics, Dublin, Ireland
William M Hynes, Future Analytics, Dublin, Ireland
Mary Lee Rhodes, Trinity College, Business School, Dublin, Ireland

ABSTRACT
Sustainable decision making for strategic planning requires support frameworks which can analyse and interpret the multiple interactions underpinning complex urban environments. Such frameworks are often based on economic measures, consequently there is a need for a decision support framework designed to aid work towards a more holistic view of sustainable urban planning projects. As an initial step towards this framework, the authors aim to devise sustainable energy indicators designed to be flexible enough to address the vast extent of urban sustainability processes. In addition, we examine how these indicators need be designed to reflect the broad range of data sources that reflect the three pillars of sustainability, namely: environmental; economic; and social elements. The indicators have been developed specifically for the European urban environment and can be used both internally, for identification of “hot spots”, and externally, for sustainability reporting and stakeholder engagement.

KEYWORDS
Energy Management, Indicators, Measurement, Planning, Urban Sustainability

INTRODUCTION
Developing urban sustainability performance indicators will be critical for cities aiming to reach the targets set at the 2015 Paris Climate Conference (COP-21). With the signing of the COP-21 conference agreement world leaders have pledged to keep global temperatures “well below” 2.0°C above pre-industrial times and “endeavour to limit” them even more, to 1.5°C. This will involve limiting the amount of greenhouse gases emitted by human activity to the same levels that trees, soil and oceans can absorb naturally. Each country’s contribution to cutting emissions will be reviewed every five years so that objectives may be scaled to the challenge. This paper focuses on the advanced economies of Europe due to the substantial contribution they have to global CO₂ emissions.

It has been argued that traditional measures of urban quality of life and economic performance are inadequate as they fail to ensure a composite analysis of the interdependent systems underpinning urban society. The crossover and interdependence between city systems at a regional and European level is not currently reflected in urban decision-making. This deficiency risks the resilience of urban environments and increases the susceptibility of these centres to the consequences of climate change.

DOI: 10.4018/IJEPR.2017100101

Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
It also impedes the ability of these urban centres change and adapt their constituent processes in a sustainable manner. This issue is especially pronounced when it comes to the assessment, measurement and remediation of urban areas’ practices in relation to the consumption of energy.

Past attempts to answer the rudimentary question of whether a city is successfully becoming more sustainable cannot be adequately determined due in part to divergence on which indicators should be employed. Drawing from this, the question arises: How should these indicators be selected and then how should they be aggregated? The basis of this paper is that, for successful assessment of urban sustainability, the required first step is to put forward a set of multi-dimensional indicators. The use of a multi-criterion framework to make the ‘measurement of sustainability’ operational is discussed here by means of an assessment of key stakeholder perspectives including potential end users, academics, and industry leaders.

The concept of sustainable development is based on the observation that a city’s economy, environment and wellbeing can no longer be separated. Newman and Jennings (2008, p. 264) define sustainable urban ecosystems as ‘systems which are ethical, effective, self-regulating, resilient, self-renewing, and flexible’. Developing from early natural ecosystems our modern urban systems have become more complex with many interrelated structural layers. We adopt the definition of sustainable development put forward by the World Commission on Environment and Development (WCED); “development that meets the needs of the present without compromising the ability of future generations to meet their own needs,” (Brundtland & Mansour, 1987). In terms of operationalising sustainable development, this research aims to enhance the urban environment by minimising energy consumption through green building monitoring technologies and reducing greenhouse gas emissions by providing clear analysis of the urban environment. The manner in which this goal will be achieved is linked to the development of a bespoke decision support tool for city managers and citizens with sufficient functionality to equip those stakeholders with the knowledge needed to alter the patterns of energy consumption in the urban environment. The indicators discussed herein are a vital first component in that process. Refined through the use of stakeholder consultation, the indicators presented herein adhere broadly with the three pillars of sustainability.

The Bellagio Principles (Hardi & Zdan, 1997), which served as guidelines for indicator design, express the need for ‘indicators’ and ‘standardised measurements’ of sustainability: When considering indicators for sustainable development, the issue can appear complicated by the lack of any firm foundation on which to base their development. Haughton and Hunter (1994) argue that the concepts of building for the future, resource equity and environmental impact must underpin the process of sustainable development, such that the principles of inter-generational equity and trans-frontier responsibility are at the forefront of sustainable development policy. These concepts continue to be widely debated and most recently world leaders discussed how to address sustainability issues at the 2015 United Nations Climate Change Conference in Paris.

For our purposes, the fundamental outcome of this agreement is the need for sustainability analysis tools for the built environment, particularly relating to the management and quantification of energy use. Critically these outcomes will impact on the societal and economic activity of urban communities (Anttiroiko, 2012). Indicators may be used to retrospectively monitor the long-term sustainability trends of a built urban system. The aggregated information these indicators can provide will help in the development of short-term projections. Through this paper, we put forward 31 sustainable urban indicators (SUIs) with the objective of developing a quantitative assessment index to provide a coherent multidimensional view of the urban environment. These SUIs form the basis of an online interactive planning tool which will aid planners in the analysis of and decision making for sustainable urban environments.

The impetus for the creation of the SUIs is increasingly being reflected in the drive to create low carbon energy districts in the European urban environment. The planned creation of such districts is being driven both by European Union policy and national governments. This will be further enhanced by the approach of the binding deadline for the Energy Efficiency Directive (Directive. 2012/27/EU
Intellectual Assets and Knowledge Vitality in Urban Regions: The Role of Universities
www.igi-global.com/chapter/intellectual-assets-knowledge-vitality-urban/7248?camid=4v1a

Creating Collaborative Environments for the Development of Slum Upgrading and Illegal Settlement Regularization Plans in Brazil: The Maria Tereza Neighborhood Case in Belo Horizonte