Chapter VIII
Voice and Space:
Agency of the Acousmêtre in Spatial Design

Richard Coyne
University of Edinburgh, UK

Martin Parker
University of Edinburgh, UK

ABSTRACT

The widespread use of mobile telephony prompts a reevaluation of the role of the aural sense in spatial understanding. There are clear correlations between voice and space. The attributes of the voice constitute important variables in the way people position themselves in public spaces: to speak, to hear, or to get away from the voice. The voice can connote intimacy, communality, and welcome, but also has the potential for disquiet and disruption, particularly as an unseen acousmêtre, (a term developed in film studies). Spatial design can benefit from an exaggerated consideration of voice, to counteract the primacy already given to the visual field. This chapter examines the relationship between the voice and space in public spaces, and the technologies and practices involved.

INTRODUCTION

There are obvious correlations between voice and space. The dimensions and shapes of spaces have been influenced arguably by the audibility of the human voice. Chairs and tables in a restaurant are positioned to facilitate the reach of the hand and the consumption of food, but also to enable quiet conversation, enabling us to hear the voice of our companions and to be sufficiently distant from others to aid privacy. In a restaurant, the position and volume of the voice is one of a complex of variables that influences spatial configuration. The voice also influences the dimensions of civic space. There is a famous photograph of Lenin addressing a crowd in Sverdlov Square, Moscow. There is
a vast crowd, the space is huge, his gestures are theatrical, and there is no artificial amplification. We can only guess at the sound of his voice, the hush of the crowd, and the whispers of those conveying the message to others at the limits of hearing. Great civic spaces were laid out with a consideration of the voice and its limits.

The voice, in turn, has adapted itself to the character of spaces. People adjust the volume of their voice according to the ambience and functioning of the restaurant. The ideological stridency of assembly spaces, such as Sverdlov Square, stands in contrast to the milling spaces of contemporary cities. The voices of London's refurbished Trafalgar Square (or Sverdlov Square now) are muted, individualised, and mediated by digital networks. The voices of contemporary civic assemblies are broadcast via sound systems and commodified as entertainments. Concurrent with the public spectacle, individuals and groups negotiate gathering patterns with their mobile phones. Some communicators are not so much there as forever elsewhere. As a further remove from the ideology of civic space, we can consider the emerging norms of the voice amongst commuter interchanges, the shrill tones of the voice battling the sounds of clubs and bars, the anxious voice at the motorway breakdown point, the plaintive or strident voice of the socially marginal and homeless.

The human voice also serves to locate us in space. In writing about the voice in cinema, Michel Chion notes how “the presence of a human voice structures the sonic space that contains it” (Chion, 1999, p. 5). In the visual field, our eye is drawn readily to the presence of a human body, even a long way off, and by this means gives scale and significance to a space. So, it is for sonic space, that is, space as defined and enhanced aurally: “If a human voice is part of it, the ear is inevitably carried toward it, picking it out, and structuring the perception of the whole around it. The ear attempts to analyze the sound in order to extract meaning from it—as one peels and squeezes a fruit—and always tries to localize and if possible identify the voice” (Chion, 1999, p. 5). Voices carry, and demand attention. Presumably, part of the annoyance of overhearing half-conversations on mobile phones in public spaces derives from our unavoidable propensity to seek out the voice. We can more readily tune out the clanging of dinner plates, or even a ring tone, than we can the chatter of the voice, even if we cannot make out what it is saying. Conversely, if we wish to attract attention to a space or within a space, then there is sense in placing a voice there, a strategy commonly deployed through the vehicle of ubiquitous piped music, especially the singing voice.

These are the obvious correlations between voice and space: positioning ourselves and configuring our spaces so we can speak and hear; adapting our voice to the character of the spaces we occupy; and being drawn to the voice as a spatial focal point. These correlations suggest that the voice is a factor to be taken into account in the design and configuration of spaces. However, we can see that there is a dynamism to the voice, which makes it more difficult to grasp as a spatial determinant than vision. Architects are adept at designing spaces such that people can be seen or unseen. They configure vistas, frame views, and play with visual balance. The geometry of seeing is easy to abstract on paper in plans, sections, and elevation, and to plan for. Architecture and consumer culture consciously participate in the “society of the spectacle” (Debord, 1983), but less knowingly in the “culture of the acousmêtre” (defined next). In the case of sound, there are competing voices, voices are often mobile, we are generators and receivers of voices, and we may also be distracted by listening to what the voice is actually saying.

In this chapter, we have already resorted to a long-standing tradition in the way scholars talk about voice. We have described voice in visual terms. In fact, the tradition suggests that the voice is incomplete without vision. According to Roger Connor’s cultural history of voice: “Sound, and
Related Content

On Concept Algebra: A Denotational Mathematical Structure for Knowledge and Software Modeling
Yingxu Wang (2010). Discoveries and Breakthroughs in Cognitive Informatics and Natural Intelligence (pp. 126-148).
www.igi-global.com/chapter/concept-algebra-denotational-mathematical-structure/39263?camid=4v1a

Big Data Analytics: A Cognitive Perspectives
www.igi-global.com/article/big-data-analytics/179933?camid=4v1a

Brain Architecture for Visual Object Identification
Gustavo Torres, Karina Jaime and Félix Ramos (2013). International Journal of Cognitive Informatics and Natural Intelligence (pp. 75-97).
www.igi-global.com/article/brain-architecture-for-visual-object-identification/87177?camid=4v1a

Multitasking Bar: Prototype and Evaluation of Introducing the Task Concept into a Browser
www.igi-global.com/chapter/multitasking-bar-prototype-evaluation-introducing/66264?camid=4v1a