Flexible Learning: Onsite!

Claus Witfelt, IT University of Copenhagen, Denmark

Introduction

Flexible learning is a term usually connected with IT and the dimensions time and space, for instance when using CSCL-systems (e.g., Blackboard, Sitescape, or FirstClass) to combine onsite learning with online learning in further education, typically with few, intensive onsite seminars separated by online periods where the students work, communicate, and learn via the Internet.

This chapter takes a different approach to flexible learning and how technologies from distributed, flexible learning can be used in everyday university teaching and learning—onsite learning. Onsite learning is characterized not by virtual and distributed processes, but actual presence of the students.

In the current study, we have identified a number of scenarios for these learning contexts and tried a number of systems. In the chapter we will discuss the problems, the pros and cons of the various scenarios, and in short describe some of the technologies we have worked with.

The Course

We have for three years taught the master-level courses Learning and IT (LOT) and Learning and IT Innovation at the IT-University of Copenhagen. The theme of the
course is e-learning—and more: learning, IT, and pedagogy in a broader context, making the students aware of these dimensions in design, communication, and media. The students have very different educational backgrounds and bachelor-level education: medicine, architecture, graphical design, teachers, and many other subjects.

In the courses the students work with both theories, analysis of products and learning contexts, and special needs of various groups. From this point of departure, they define their own projects and implement solutions, for example, design prototypes of CBT, e-learning, or CSCL-solutions. This makes the course both theoretical and practical.

The course lasts for 12 weeks, with 12 full days of lectures, exercises, teamwork, supervision, and other forms—where the students are actually working on campus. Besides the work on campus, the students also study the literature, analyze solutions, and work on projects, usually in a combination of online and onsite work. After the course, many students choose to continue the work in project groups, master projects, and so forth.

The backbone of the course is an educational science textbook (Illeris, 2002), introducing general theories of learning, a compendium, and a lot of digital, supplementary materials, examples, and so forth. The compendium and the digital resource contain various texts about key issues among the themes the students choose to work with, popular issues, current debates, and so on. The general textbooks are the fixed parts of the course; the other texts form the dynamic part which denotes a space in which the course can be flexible.

Students who participate in these courses are usually quite pleased with the flexibility, for instance, that it is possible to add current links and new texts from one lecture to another, for instance if a discussion needs some following up, more materials, and so on. In the last part of the course, the students can actually make requests for lectures about specific themes related to the student projects or current debates. This makes the course dynamic, actual, and plastic, and our students appreciate this plasticity in their evaluations. It is a turn from the sage-on-the-stage, the lonely professor given the same lecture year in, year out, and it calls for a special, very dynamic digital infrastructure. In other studies though, the students have not been interested in this flexibility (e.g., Dehn, Hansen, & Witfelt, 2003).

The Scenarios

In order to meet these needs, we have identified a number of learning scenarios in the course design. We want to support each of these scenarios with digital structure to (1) support learning and (2) teach the students how to use various systems for teaching and learning.

Many of our students after graduation find jobs in the e-learning industry, publishing houses, or other similar teaching and learning context, so we find it very important to use an active learning approach, giving the students concrete experiences with the technology. The use of learning scenarios is described several places, for instance by Bent
Supporting Mathematical Communication through Technology
Chandra Hawley Orrill and Drew Polly (2013). *Common Core Mathematics Standards and Implementing Digital Technologies* (pp. 23-37).
www.igi-global.com/chapter/supporting-mathematical-communication-through-technology/77472?camid=4v1a