Concoction of Ambient Intelligence and Big Data for Better Patient Ministration Services

Arushi Jain, Ambedkar Institute of Advanced Communication Technology and Research, Department of Computer Science and Engineering, New Delhi, India
Vishal Bhatnagar, Ambedkar Institute of Advanced Communication Technology and Research, Department of Computer Science and Engineering, New Delhi, India

ABSTRACT
The term Ambient Intelligence (AmI) encompasses other technologies such as ubiquitous communication, pervasive computing and ubiquitous computing. Hospitals can improve their working by monitoring the health of the patients and performing automatic analysis of various and health parameters inside the room. Security mechanisms can also be enhanced by only allowing authorized hospital staff and attendants in the ward. With the advent of Ambient Intelligence and the congenial political environment, the focus is now shifting to providing better healthcare at homes than at traditional medical centers. In this paper, we implemented an algorithm in which we consider a specific room of a hospital as the environment, with a patient monitored for health and security reasons. If anything is not allowed for the particular patient or there are some unwanted variations in the health parameters of the patient, the alarm was rang and the patient’s assistants were notified.

KEYWORDS
Ambient Intelligence, Big Data, Sensors, Ubiquitous Computing

INTRODUCTION
In computer science jargon, Ambient intelligence (AmI) is an emerging field which deals with environment that is responsive and sensitive to the presence of humans. The term Ambient Intelligence encompasses other technologies such as ubiquitous communication, pervasive computing and ubiquitous computing. The objective Ambient Intelligence is to aid people in carrying out there day to day activities with the help technology including but not limited to the sensors and information generated through these sensors connected over networks. It aims to make people’s lives more comfortable, simpler and easier by carrying out their day to day activities (Augusto, 2007). AmI is intimately related to the idea of having an intelligent system which technologies, capable enough to automate a platform at same time embedding the other necessary services anticipatory, personalized, adaptive etc. An example of an ambient intelligent system could be an automated home system also known as the smart homes. By smart homes we mean, a house that is fitted sensors and makes use of technology to provide advanced services to its users. For example, a room can be fitted with a motion sensor which detects when a person leaves or enter the room and the AmI system turns on the lights accordingly. Additionally, several other items present in the homes can be fixed with sensors and wired over a network to track their usage. Household appliances such as refrigerators, televisions, washing machines, geysers etc can all be connected over a network and made to work in sync with each other. For example, a person enters his wake-up time in the AmI system the system will calculate the time

DOI: 10.4018/IJACI.2017100102

Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
needed to him get ready and will switch on the geyser automatically on his behalf and similarly preheat the microwave which can be stuffed with food in the night, thus any individuals can save a lot of time and effort which they usually spend in these mundane tasks.

Other applications of the ambient systems and the environments in which they can work upon include (Augusto, 2007):

- Health sector related applications: Hospitals can improve their working by monitoring the health of the patients and performing automatic analysis various and health parameters inside the room. Security mechanisms can also be enhanced by only allowing authorized hospital staff and attendants in the ward (Augusto, 2007). With the advent of Ambient Intelligence and the congenial political environment, the focus is now shifting to providing better healthcare at homes than at traditional medical centers. Ambient technologies are being leveraged to treat patients in their homely environment but if in some grave circumstance the patient has to be taken to the hospital there also AmI comes in handy. Imagine a system in which a person wears health bands which monitors its key cardiac parameters. At a particular moment suppose the data from the band shows that the person is about to develop a heart attack the system immediately calls the ambulance on the patient’s behalf.

- Public transport can also benefit in a large way from ambient technologies, vehicles can be fitted with GPS trackers so that they can be tracked at any moment of time, traffic analysis could be done. Thus, helping in maintaining the law and order in the city and at the same time keeping the public transport related crime under check (Augusto, 2007).

- Education institutions can track their students’ progress, attendance, frequency of turning in assignments, their habits and health charts so that they can tender to each student more intimately, responding to each student based on their individual need.

- Emergency response teams can be better prepared to fight with calamities and emergency situations if AmI can be used to prepare the optimal route map to reach the place of accidents, reducing the response time, and also prepare a line of action strategy to tackle a situation. All this can save precious few minutes which can be like gold dust in hours of crisis (Augusto, 2007).

RELATED RESEARCH WORK AND MOTIVATION

To manage the growing demands, there is a need to increase the capacity and performance of tools and methods employed for analysis of data. Chen et al. (2014), in their work “Big data: A survey” focused on big data and reviewed related technologies and examined the application of big data in various fields. Al-Jarrah et al. (2015), in their work “Efficient Machine Learning for Big Data: A Review” reviewed the data modeling in large scale data intensive field relating to model efficiency and new algorithm approaches. Hoffmann and Birnbrich (2012) to protect their customer from third party fraud proposed a conceptual link between retail bank activities in “The impact of fraud prevention on bank-customer relationships: An empirical investigation in retail banking”. Srivastava and Gopalkrishnan (2015) revealed some of the best techniques which are used by the banks across the globe and can be used by the Indian banks to enhance their services offerings to the customers in “Impact of Big Data Analytics on Banking Sector: Learning for Indian Banks”. Azar and Hassanien (2014) for dimensionality reduction presented a linguistic hedges neuro-fuzzy classifier with selected features (LHNFC SF). In this paper author compared the new classifier with the other classifiers for various classification problems in “Dimensionality reduction of medical big data using neural-fuzzy classifier”. Hassanien et al. (2015) focused on application, challenges and opportunities of big data in “Big Data in Complex Systems: Challenges and Opportunities”. Wahl et al. (2014) proposed a social media and its implication on customer relationship management in “Social Media: The core of enterprise 2.0.”. Shabeera and Madhu Kumar (2015), in their work “Optimizing virtual machine allocation in MapReduce cloud for improved data locality” focused on improving data locality by allocating virtual machines for executing map reduce jobs.
An Approach to License Plate Recognition System Using Neural Network
www.igi-global.com/chapter/an-approach-to-license-plate-recognition-system-using-neural-network/208040?camid=4v1a