Chapter V

Rethinking Cognition, Representations, and Processes in 3D Online Social Learning Environments

James G. Jones, University of North Texas, USA
Stephen C. Bronack, Appalachian State University, USA

Abstract

Three-dimensional (3D) online social environments have emerged as viable alternatives to traditional methods of creating spaces for teachers and learners to teach to and to learn from one another. Robust environments with a bias toward peer-based, network-driven learning allow learners in formal environments to make meaning in ways more similar to those used in informal and in-person settings. These new created environments do so by accounting for presence, immediacy, movement, artifacts, and multi-modal communications in ways that help learners create their own paths of knowing using peer-supported methods. In this chapter, we will review the basics of the technologies and the theoretical underpinnings that support the development of such environments, provide a framework for creating, sustaining, and considering the effectiveness of such environments, and will conclude by describing two examples of 3D virtual worlds used to support course instruction at the university level.

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.
Introduction

Three-dimensional (3D) online social learning environments have emerged as viable alternatives to traditional methods of creating spaces for teachers and learners to teach to and to learn from one another. While games are the most prominent example of the use of a 3D graphics interface (Wikipedia, 2006), our experience and research suggests that the use of this technology in non-game settings can positively impact learning and communications among students and with their instructors (Aldrich, 2004; Jones, 2004, 2006; Jones, Morales, & Knezek, 2005; Jones & Overall, 2004). Well-designed 3D online learning environments that combine social constructivist principles with immersive gaming theory support deep cognitive learning in powerful new ways. Robust environments with a bias toward peer-based, network-driven learning allow learners in formal environments to make meaning in ways more similar to those used in informal and in-person settings. These new created environments do so by accounting for presence, immediacy, movement, artifacts, and multimodal communications in ways that help learners create their own paths of knowing using peer-supported methods. These environments move beyond current Web and text-based methods for instructional delivery to create new Internet-based delivery methods that can facilitate new interactions, higher levels of engagement, and deeper learning.

In this chapter, we will review the basics of the technologies and the theoretical underpinnings that support the development of such environments. Then, we will provide a framework for creating, sustaining, and considering the effectiveness of such environments on the abilities of participants to use their experiences in virtual worlds to make better sense of their experiences in the real one. We will conclude by describing two examples of 3D virtual worlds used to support course instruction at the university level.

3D Online Learning Environments

3D online learning environments take elements of massively multi-player online entertainment technology and overlay selected tools to create an interface that allows students and instructors to interact and to communicate within a designed environment for the purpose of accomplishing informal or formal learning. Online environments used in games are the “convergence of two technologies: video games and high-speed Internet” (Kushner, 2004, p. 98). When an environment is built and displayed correctly, the user understands intuitively the space as displayed. For example, in an environment representing a building, users feel as though they are walking the halls of the building, or are engaged with other users in discussions, or immersed in a training situation. The user moves through and interacts with the environment using the keyboard, a mouse, or other heptic devices. As users move, the computer generates new graphics in real time to give them feedback on their position in the environment. This gives the user the feel of movement through space. Placing objects in a contextual 3D framework provides users known reference points and creates a framework for communications and interactions. Students at remote sites assume control of a representation of themselves, also called an avatar, in a shared created environment such as a school building, a park, or any other space. These highly graphical 3D interfaces allow individuals, through
Virtual Learning Environments. The oLTECx: A Study of Participant Attitudes and Experiences
www.igi-global.com/article/virtual-learning-environments-oltecx/53152?camid=4v1a