Chapter 14

Mentoring Toward Independent Scholarship: Effectively Mentoring Online Graduate Students

Nathan Philip Howe
Western Governors University, USA

ABSTRACT
The proliferation of online degree program offerings has necessitated new approaches to academic mentoring. This chapter discusses best practices in mentoring for online graduate students, focused through the lens of transactional distance theory. Synchronous and asynchronous communication approaches are discussed, using the context of formalized faculty-led mentoring programs. Unique needs of graduate students and unique attributes of online education require mentoring approaches that optimally apply mentor attributes in the psychosocial and academic domains. Attributes of communication and competence are especially important. Mentors should also help students to develop self-regulatory behaviors that lead toward independent scholarship. The chapter provides practical suggestions for initiating, building, maintaining, and concluding effective mentoring relationships. A brief discussion of impacts of technological advances on the future of mentoring is also provided.

INTRODUCTION
Online degree programs represent a growing segment of the higher education landscape. Although online undergraduate programs are more common, graduate degree offerings are increasing with the overall expansion in online learning. Clear similarities exist between delivery mechanisms in online undergraduate and graduate programs, but graduate students generally have greater previous professional and educational experience. These diverse previous experiences influence graduate students’ expectations for their online degree programs. While specific mentoring approaches vary significantly, due to individual personalities and program-specific needs, this chapter addresses some widely applicable best practices for mentoring graduate students in online degree programs.

DOI: 10.4018/978-1-5225-2682-7.ch014

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
Background

Mentorship is a key aspect of higher education. A mentor can function in an assigned role, like an academic advisor, or a less formal mentoring relationship can begin with casual conversation between a student and a more experienced individual. Regardless of the formal or informal nature of academic mentoring, the following traits define a good mentoring relationship:

1. A mentor works toward integrating a neophyte into a professional capacity.
2. The relationship is reciprocal and changes over time.
3. The relationship is essential to professional and research preparation, and to the overall experience of a graduate program (Welton, Mansfield, Lee, & Young, 2015, p. 54).

Johnson and Nelson (1999) wrote about the significance of graduate-level mentoring relationships:

Theoretical and empirical writings from psychology and other fields characterize mentor-protégé relationships as long-term, complex, and multifaceted. Mentoring appears to share components in common with academic advising and counseling, yet remains distinct from these roles. Mentor-protégé relationships offer graduate students both enhanced career opportunity and personal and psychosocial benefits, and may become emotionally intimate and incorporate a wide range of shared activities and contexts. (p. 189)

Mentoring is defined by relationships, rather than by specific content. The terms protégé, mentee, and neophyte appear in various academic literature to identify the less experienced person in a mentoring relationship. Since this chapter focuses primarily on mentoring services provided by faculty to those enrolled in graduate courses, the term student is used.

Because authentic human connection between mentor and student is a definitive trait of good mentoring, technology-based interventions cannot adequately replace human mentors. However, use of technology within the context of authentic interpersonal relationships can augment the capability and capacity of mentors. Mentoring may often occur in instructional settings, but mentoring and content delivery are distinct processes. Instruction can occur without mentoring, and mentoring can occur without delivery of course content.

Why Mentoring Works: Transactional Distance and Distance Learning

While online learning is a relatively new delivery mechanism, distance learning has a significant historic and theoretical foundation. Michael G. Moore (1993) described the challenges of distance learning in his theory of transactional distance:

The transaction that we call distance education occurs between teachers and learners in an environment having the special characteristic of separation of teachers from learners. This separation leads to special patterns of learner and teacher behaviours. It is the separation of learners and teachers that profoundly affects both teaching and learning. With separation there is a psychological and communications space to be crossed, a space of potential misunderstanding between the inputs of instructor and those of the learner. It is this psychological and communications space that is the transactional distance. (p. 22)
Related Content

Conducting Formative Evaluations of Online Instructional Materials
[www.igi-global.com/chapter/conducting-formative-evaluations-online-instructional/28782?camid=4v1a](www.igi-global.com/chapter/conducting-formative-evaluations-online-instructional/28782?camid=4v1a)

Accessible Button Interfaces: Improving Accessibility for Brain-Injured and Other Disabled Users
[www.igi-global.com/article/accessible-button-interfaces/78542?camid=4v1a](www.igi-global.com/article/accessible-button-interfaces/78542?camid=4v1a)

Online Science: Its Role in Fostering Global Scientific Capital
[www.igi-global.com/chapter/online-science-its-role-fostering/27761?camid=4v1a](www.igi-global.com/chapter/online-science-its-role-fostering/27761?camid=4v1a)

Online Mathematics and Physical Science (Mathematics, Astronomy, Chemistry and Physics)
[www.igi-global.com/chapter/online-mathematics-physical-science-mathematics/27770?camid=4v1a](www.igi-global.com/chapter/online-mathematics-physical-science-mathematics/27770?camid=4v1a)