Service Level Agreements for Smart Healthcare in Cloud

Mridul Paul, Birla Institute of Technology Mesra, Off Campus - Kolkata, India
Ajanta Das, Birla Institute of Technology Mesra, Off Campus - Kolkata, India

ABSTRACT

With the advancement of Cloud computing, the adoption of cloud service in various industries is fast increasing. This is evident in the healthcare domain where the adoption is on the rise recently. However, the research contribution in this domain has been limited to certain functions. While cloud can increase availability, reachability of services, it is critical to design the healthcare service before provisioning. Besides, it is important to formulate Service Level Agreements (SLAs) to ensure that consumers can get guaranteed service from the service provider. The objective of this paper is to design the cloud based smart services for patient diagnostics. This research specifically defines service architecture for patients, physicians and diagnostic centers. In order to measure the proposed services, metrics of each SLA parameter is described with its functional and non-functional requirements. This paper also explains a case study implementation of a basic patient service using Google App Engine.

KEYWORDS

Cloud Computing, Health Informatics, Service Level Agreement, Service Provisioning, Smart Healthcare

INTRODUCTION

Cloud computing has transformed the way computing infrastructure and services were getting delivered in the past. It comes with practically unlimited computing and storage power, at lower costs and with high availability (Paul & Das, 2017). Cloud computing brought in total shift of infrastructure ownership. With three different service models – Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS) (Paul & Das, 2015), organizations have flexibility to choose the model based on the needs. Cloud computing has penetrated in almost all domains, including healthcare. However, in this domain, use of cloud computing has been limited to managing healthcare data (Braunstein, 2015). In the US, cloud is leveraged to store and manage Electronic Health Records (EHRs) (Mantas, 2001) and Patient Health Records (PHRs) (Fricton, 2008). Data analytics, using Big data, process huge volumes of patient information (Kuo, Sahama, Kushniruk, Borycki & Grunwell, 2014).

Conventional methods for medical examination are at times cumbersome for patients. Visiting physician or doctor checkup followed by carrying out diagnostic tests are always time consuming. Patients may need to wait for long time and in case any relevant documents are missed out, then treatment gets delayed further. It becomes more inconvenient if the relevant documents are misplaced or lost. These processes can be streamlined with storing all the documents in cloud and using online appointment booking facility. The objective of this paper is to design the cloud based smart services for patient diagnostics and derive functional and non-functional SLAs for those services. The advantages of this proposed services over that of conventional methods are as follows.

DOI: 10.4018/IJGHPC.2017100104

Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
1. In conventional methods, the patient has to physically book a physician or a diagnostic center appointment whereas in using cloud services, the patient can do this activity easily.
2. With cloud based services, the patients do not have to carry documents such as prescriptions, test reports, as all these documents can be accessed from anywhere. In conventional methods, patients have to take care of the documents and take full responsibility of those.
3. Physicians have better control and visibility on the patients’ diagnostics as they can view necessary documents (such as previous prescription and test reports) before the patient arrives for a checkup. Physicians can also use this data for comparing the various cases.

This paper is organized as follows: Related Work section presents recent research work done in this area and next section presents Service Level Agreements for Healthcare domain. Provisioning of Smart Healthcare Service in Cloud section elaborates the proposed services based on already proposed layered cloud architecture for healthcare (Paul & Das, in press). Data Privacy and Security section details out the privacy requirements of healthcare services for individuals. Next, the Case Study section explains the implementation on Google App Engine for online appointment booking service. The last section, Conclusion summarizes the paper and future scope of work.

RELATED WORK

Doukas, Pliakas, & Maglogiannis (2010) proposed use of cloud computing and mobile application to create a mobile system that can manage patient health records and medical images. The paper detailed out implementation using Amazon S3 storage for storing information while Android application for accessing this information. However, this novel research is limited to accessing of patient records and cannot be extended for any other service such as physician consultation and appointment booking. Besides, the security risks associated with accessing patient health records is also not addressed. A paper by Hussain, Khattak, Khan, Fatima, Amin, Pervez, & Saddiqi (2013) conceived a framework named as Smart Clinical Decision Support System (Smart CDSS) that could manage diabetic patient information from various sources (such as sensors, social media and medical knowledge bases). This framework complied with Health Level 7 (Benson, 2012) standards. Specific diabetic rule base could be applied on the information collected, generating recommendations that could assist physicians in analyzing patients’ behavioral patterns and prescribing suitable treatments. The drawback of this framework was that it could be only used for diabetes treatment and hence not extensible for other diagnosis.

Yang, Chen, Chou & Wang, (2010) evaluated cloud platform for implementing Medical Image File Accessing System (MIFAS) that could share, store and exchange medical images across different hospitals. The objective was to improve health data communication among hospitals through common platform. In a related paper by Hu, Lu, Khan, & Bai (2012), an attempt was made to connect individuals with hospitals and caregivers through a cloud solution on Google App Engine. The solution established interoperability among hospitals, health care providers and consumers and simulated tests of basic operations such as sharing medical images among hospitals, using Google App Engine. But both papers fell short of securing patients’ related information. Also, these papers did not elaborate on the support needed for different communication channels. Rashid, Farooq, Jang & Park (2011) proposed a ubiquitous health care system to provide preventive care to individuals. The system used web services and cloud storage, to enable patients to undergo specific tests such as blood pressure, weight and body fat, without any manual intervention. Again, this research too had limited scope. Das, Mitra & Basu (2016, October) demonstrated the medTravel app providing healthcare facility for mobile users. This work proposed a state-of-the-art smart mobile technology to create a mobile app for users that could manage both structure and unstructured data in the cloud. But the work did not consider the non-functional (Quality of Service) requirements for such an application.
Related Content

Matrixes of Weighing and Catastrophes
www.igi-global.com/chapter/matrixes-weighing-catastrophes/72255?camid=4v1a

Managing the Future Internet: Services, Policies and Peers
www.igi-global.com/chapter/managing-future-internet/40803?camid=4v1a
Programming Paradigms in High Performance Computing
www.igi-global.com/chapter/programming-paradigms-in-high-performance-computing/124349?camid=4v1a

Evaluation of Encryption Procedure for User Attestation System Using a Cellular Phone
www.igi-global.com/article/evaluation-encryption-procedure-user-attestation/67555?camid=4v1a