Toward Knowledge Technology Synchronicity Framework for Asynchronous Environment

Simon Cleveland, City University of Seattle, Seattle, United States
Gregory Block, Brandeis University, Waltham, United States

ABSTRACT

While distance learning education continues to grow, online instructors face certain asynchronous uncertainties when it comes to knowledge exchange with students. To counteract such uncertainties and minimize teaching deficiencies expected to occur in asynchronous learning environments, this study examines a set of knowledge building blocks that play a role in the online knowledge exchange process. Knowledge technology synchronicity framework for asynchronous environment is proposed that integrates knowledge seeking behavior, knowledge properties, knowledge domains, knowledge types, knowledge tools, and technology synchronicity. A real-life case is provided to integrate the framework in practice.

KEYWORDS

Asynchronous Education, Framework, Knowledge Dimensions, Knowledge Properties, Knowledge Seeking, Knowledge Tools, Knowledge Types, Synchronicity, Virtual Classroom

INTRODUCTION

A key component of distance learning platforms is an asynchronous learning environment, which promises to allow both students and their instructors to engage in learning at their own pace and schedule, without having to adhere to a fixed meeting time or location (Moller, 1998; Swan, 2001). Asynchronous learning can be effective for tasks where steps and outcomes are well-defined, such as an assignment to review academic literature to participate in a discussion forum (Loncar, Barrett & Liu, 2014; Nandi, Hamilton & Harland, 2012); however, in tasks where the steps are not well-defined or outcomes are not known in advance, a student may struggle when questions or uncertainties arise and there is no guidance on how to proceed (e.g. software engineering tasks) (Arkorf & Abaidoo, 2015; Dowling, Godfrey & Gyles, 2003).

Research has identified numerous techniques for addressing these deficiencies in asynchronous learning (Chen & Wang, 2004; Johnson & Altowairiki, 2016; Underdown & Martin, 2016); however, many of the approaches require some form of synchronous intervention (cognitive apprenticeships) (Jonaseen et al., 1995), or are limited to addressing finite problems that can be anticipated in advance (scaffolding) (Sims, Dobbs & Hand, 2002). These approaches do not improve a student’s own problem-solving skills for indeterminate problems without resorting to synchronous interactions, thus representing a challenge for online programs that offer ‘self-paced’ competency-based degrees with minimum intervention by instructors. As a result, the research question for this study is: how can knowledge be organized to minimize teaching deficiencies expected to occur in asynchronous learning environments?

DOI: 10.4018/IJKSR.2017100102

Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
In this paper, the authors present an asynchronous knowledge technology synchronicity framework that integrates knowledge form, types, dimensions, and technology synchronicity required for completing knowledge exchange in a virtual classroom. An example is provided to illustrate a deficiency in knowledge transfer and to integrate the framework.

The rest of the paper is structured as follows. First, an examination of knowledge exchange in the virtual classroom is performed and a set of building blocks is analyzed in detail. Next, a framework to organize the knowledge exchange properties are proposed. The paper concludes with a summary and a call for further research.

VIRTUAL KNOWLEDGE EXCHANGE

In this study, the authors define asynchronous learning as the process of acquiring and converting knowledge within an online environment that is independent of space and time. The process, which was made possible by advancements in the technology for computer-mediated communication (CMC), has revolutionized the education industry. It has bridged the interaction between students and educators through virtual classrooms hosted within online learning systems (OLS).

The modern virtual classroom is a space where students interact with one another and with the instructor through forums, simulations, and collaborative assignments. Such interaction has been found effective in increasing the motivation to learn, mastery of course material, and greater quality of educational experience (Hiltz and Wellman, 1997). The interaction between instructor and students consists of complex processes that involve the seeking, acquisition, conversion, and integration of knowledge between parties. In the following section, we examine specific behaviors, knowledge properties, knowledge domains, and knowledge tools that will be used to formulate the proposed framework.

Knowledge Seeking Behaviors

First, an examination of the process of knowledge seeking is performed. A key factor in the process of knowledge exchange is knowledge seeking behaviors. Such behaviors are defined as scanning for data and information in order to satisfy certain information needs (Xu, Tan, & Yang, 2006). These activities are best explained by the information foraging theory that postulates that individuals would forage for information when they encounter vague problems requiring solutions (Pirolli & Card, 1999).

Studies show that such behaviors fall into various categories. For example, Vandenbosch and Huff (1997) proposed four such categories:

- **Undirected** – purposeless exposure to information;
- **Conditioned** – exposure that is not based on specific search for information;
- **Informal** – attempt to discover information that has no structure;
- **Formal** – directed attempt to discover precise information.

Furthermore, studies found that knowledge seeking behavior encompasses focused search which “occurs when organizational members or units actively search in a narrow segment of the organization’s internal or external environment, often in response to actual or suspected problems or opportunities…” (Huber, 1991, p. 97).

Finally, according to Belkin (1980), knowledge seeking behaviors consist of:

- Seeker’s awareness of knowledge disparity
- Quest for gathering relevant information
- Awareness of reduced knowledge disparity
Application of Educational Robotics on an Automated Water Management System
www.igi-global.com/article/application-of-educational-robotics-on-an-automated-water-management-system/193228?camid=4v1a

Explanatory Model of Adoption, Development and Utilization of Administrative Workflow Systems
www.igi-global.com/article/explanatory-model-of-adoption-development-and-utilization-of-administrative-workflow-systems/154062?camid=4v1a