Hybrid Approach of Modified AES

Filali Mohamed Amine, Djellali Liabes University, Sidi Bel-Abbes, Algeria
Gafour Abdelkader, Djellali Liabes University, Sidi Bel-Abbes, Algeria

ABSTRACT

Advanced Encryption Standard is one of the most popular symmetric key encryption algorithms to many works, which have employed to implement modified AES. In this paper, the modification that has been proposed on AES algorithm that has been developed to decrease its time complexity on bulky data and increased security will be included using the image as input data. The modification proposed itself including alteration in the mix column and shift rows transformation of AES encryption algorithm, embedding confusion-diffusion. This work has been implemented on the most recent Xilinx Spartan FPGA.

KEYWORDS

AES Modified Algorithm, Decryption, Encryption, Security

INTRODUCTION

It is important aspect to protect the confidential multimedia data from unauthorized access. Multimedia content can be text, audio, still images, animation and video. Such contents are protected by multimedia security method. Commonly, this is attained by techniques that are profoundly based on cryptography. These schemes facilitate communication security, piracy and shelter (Chang, 2014).

Large size of images causes certain challenges for encryption. Normally a typical image has a very large size. Using traditional encryption algorithm will make encryption difficult for large volume of multimedia data (Chang et al, 2016). For the encryption of any multimedia data, we need such algorithms that require less computation because of large size of data. Symmetric-key algorithms are fewer computationally serious than any Asymmetric key algorithms. Typically, symmetric key algorithms are thousands of times sooner than those of the asymmetric algorithms. So, the better suitable method to encrypt the multimedia data is, to encrypt it with symmetric key encryption algorithms.

Our research is concerned with optimizing the existing standards of cryptography (AES) for the images and data encryption. It is also slanting towards exploiting the huge amount of data, in order to attain preferred speed. in this work proposes a modified version of AES algorithm and demonstrates that executions can accomplish superior and high throughput (Chang, et al., 2016).

STATE OF ART

There are several modified in AES to improve speed the performance, increase the security and addition same complexity on algorithm steps. (Mohammad, et al., 2015) The reason development

DOI: 10.4018/IJOCI.2017100105

Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
is appeared many different the implementation on software and hardware. Each implementation has need to modified AES according to the specific proposes.

In (Xu, et al., 2013) a modified AES by used longer key length and data matrix. That extended the data matrix to eight row and variable number of column (6, 8, 12 and 16) the input data block (48, 64, 96 and 128), and extended the key length to (384, 512, 768 and 1024). This paper not change the first and fourth stages (substitution byte, Add Round Key), third stage shift row change from shift third row to seventh row shifted left and four stages (mix column) change the static matrix 3x3 to new matrix 8x8, should be calculate inverse static matrix used in Mix column on GF (28). This modification is increase robustness and use a few times for encryption and decryption processing.

In (Kaur, et al., 2014) modified the AES algorithm by reduce the calculation, computation overhead, and reduce the time encryption process. It replaces the mix column stage in AES algorithm into permutation stage (like the permutation table (IP) that used in DES algorithm) because the mix column is take large calculation time and that makes the encryption process are slow. The other stages in AES algorithm don’t change.

Finally, modification used simple S-box for encryption and decryption to reduce the computation amount, the new S-box has some properties, simple generation and same S-box used for encryption and decryption (Rashidi, 2014).

The Advanced Encryption Standard (AES)

The AES is a block cipher that is the standard version of Rijndael. It has a fixed block length of 128bits and variable key lengths. The number of internal rounds of the AES depends on the key size, which is 10, 12 and 14 for the key length 128, 192 and 256 respectively. In our design, we consider the case of 128 bits for the key length and 10 rounds. Before the first round, the main key is added to the plaintext. Then, in rounds1–9, all four operations are performed to the state array. In the last round (10th round), the Mix-columns transformation is not used, which makes encryption and decryption symmetric (Daemen et Rijmen, 2001) (see Figure 1).

Sub Bytes

Function performs a non-linear transformation independently on each byte of the input state. This transformation is performed by substituting each byte of the state with a value from substitution box (also termed as S-box). There are 16 parallel S-boxes each with eight inputs and eight outputs. The S-box operation is the only non-linear transformation of the AES algorithm. It is an invertible operation and can be used for decryption processes too.

Shift Row

Shift Row operation is the cyclic shifting of each row of the state to the left. The shifting numbers are depended on the number of the row. The top row is not shifted and the last three rows are cyclically shifted over 1, 2, and 3 bytes, respectively

Mix Column

This process is for mixing up of the bytes in each column separately during the forward process. The corresponding transformation during decryption is denoted InvMix-Columns and stands for the inverse mix column transformation (Ichikawa et al, 2000). The goal here is to further scramble up the 128-bit input block.

Key Addition

In this operation, the round key is applied to the State by simple bit-by-bit XOR. Key-Addition is the same for the decryption process. Before the first round, a key addition layer is applied to the cipher data. This transformation is stated as the algorithm initial round key addition. The final round of
Using Swarm Intelligence for Optimization of Parameters in Approximations of Fractional-Order Operators
[www.igi-global.com/chapter/using-swarm-intelligence-optimization-parameters/72829?camid=4v1a](www.igi-global.com/chapter/using-swarm-intelligence-optimization-parameters/72829?camid=4v1a)

Optimum Design of Hybrid EDFA/FRA by Particle Swarm Optimization
[www.igi-global.com/chapter/optimum-design-hybrid-edfa-fra/72827?camid=4v1a](www.igi-global.com/chapter/optimum-design-hybrid-edfa-fra/72827?camid=4v1a)