Chapter 1
Giving Robots a Voice: Testimony, Intentionality, and the Law

Billy Wheeler
University College London, UK

ABSTRACT

Humans are becoming increasingly dependent on the ‘say-so’ of machines, such as computers, smartphones, and robots. In epistemology, knowledge based on what you have been told is called ‘testimony’ and being able to give and receive testimony is a prerequisite for engaging in many social roles. Should robots and other autonomous intelligent machines be considered epistemic testifiers akin to those of humans? This chapter attempts to answer this question as well as explore the implications of robot testimony for the criminal justice system. Few are in agreement as to the ‘types’ of agents that can provide testimony. The chapter surveys three well-known approaches and shows that on two of these approaches being able to provide testimony is bound up with the possession of intentional mental states. Through a discussion of computational and folk-psychological approaches to intentionality, it is argued that a good case can be made for robots fulfilling all three definitions.

INTRODUCTION

The great goal of social robotics is to have fully autonomous machines working alongside humans who are capable of establishing relationships of trust, dependence and co-operation in something like normal everyday social environments. Sectors that have been considered to benefit most by this new technology include healthcare, the service sector and education (European Commission, 2016). Closer ties between humans and robots in society brings with it implications for existing social structures...
which, for the most part, evolved without the need to involve such machines. One area 
where this is particularly true is the law. Although not a social robot, the mismatch 
between existing social institutions and emerging technologies can be seen in the 

case of the driverless car. In May 2016, a driverless car was involved in the death 
of a passenger when its autopilot feature steered towards an oncoming lorry (Lee, 
2016). This incident created somewhat of a media frenzy as news reporters and 

commentators speculated on who was to blame. Was it the passenger? Was it the 
car manufacturer? Or was it the car itself? To date, no criminal charges have been 
brought against either the manufacturer or artificially intelligent car.

Whether robots in the future can be subject to prosecution is not the only issue 
raised by this emerging technology’s relationship with the law. Another, much 
less discussed issue, concerns the role robots might play as a source of evidence 
within legal proceedings. In fact, in the future, with closer ties between humans 
and robots, it is more likely that robots will be a witness to a crime than directly 
involved in one themselves, either as the victim or the perpetrator. But how should 
the information gathered by a robot witness be used in a trial? What rights should 
be granted to them during legal proceedings? And can a robot be ‘cross-examined’ 
by a lawyer in the same way a human witness can? These are not easy questions 
to answer. This chapter will explore the philosophical underpinnings for different 
answers to these questions.

Traditionally, formal or legal testimony has been seen as a type of epistemic 
testimony more generally (Gelfert, 2014). Epistemic testimony is the knowledge 
one gains through ‘being told so’ by somebody else. If robots are to be witnesses for 
the purpose of criminal proceedings, then it needs to be established whether or not 
robots can be testifiers in this more general sense. Part of this chapter will therefore 
investigate current definitions of testimony to explore whether and to what extent 
some machines can be testimonial sources of knowledge.

It turns out that on some definitions, whether a source of belief is testimonial 
depends upon whether that source is possessive of intentional states about what they 
are saying. On certain ‘exclusive definitions’ to be a testifier requires the speaker 
to intend to ‘offer up’ their statement as true and for it to be believed by a potential 
hearer (Coady, 1992). Such an understanding is clearly presupposed in the legal 
case where the authenticity of witness testimony can be questioned if it emerges 
that the witness asserts a pre-prepared script or has been put under pressure to offer 
a statement dictated to them by a third party (Calo, 2016). This takes us into the 
issue of whether robots can have intentional mental states and whether the kind of 
intentionality that is required in the legal case squares with what robots are capable 
of achieving.

To answer this question the chapter will explore two pieces of evidence in favor 
of robot intentionality with important implications for testimony in court. The first
Related Content

Modelling and Simulation Approaches for Gas Turbine System Optimization
www.igi-global.com/chapter/modelling-simulation-approaches-gas-turbine/78108?camid=4v1a

Gait Transition Control of a Biped Robot from Quadrupedal to Bipedal Locomotion Based on Central Pattern Generator, Phase Resetting, and Kinematic Synergy
www.igi-global.com/chapter/gait-transition-control-biped-robot/78096?camid=4v1a
Distributed Task Allocation in Swarms of Robots
www.igi-global.com/chapter/distributed-task-allocation-in-swarms-of-robots/84908?camid=4v1a

Invited Commentaries: Responses to Eva Hudlicka’s “Guidelines for Designing Computational Models of Emotions”
www.igi-global.com/article/invited-commentaries-responses-eva-hudlicka/58365?camid=4v1a