Chapter 17

College Student Reception of Next-Generation Learning and Effective Approaches for Instructors

Donna M. Farina
New Jersey City University, USA

Natalia Coleman
New Jersey City University, USA

ABSTRACT

Next-generation learning (NxGL) approaches have been applied to improve learning outcomes for the diverse student population of New Jersey City University (NJCU), one of the top hundred most diverse institutions of higher education in the country. This chapter focuses on the variety of reactions that diverse students, both undergraduate and graduate, can have to unknown or unfamiliar learning experiences, as they move through different stages of adjustment to the next-generation classroom. The chapter discusses how instructors can anticipate common student reactions and what they can do to guide students toward successful participation in NxGL. The improved skills of the instructor will allow students to benefit to the fullest possible extent from new learning opportunities. If the instructor feels at home with next-generation teaching and learning, this will increase the potential for student success as well as satisfaction with these approaches.

INTRODUCTION

The authors of this chapter have applied next-generation learning (NxGL) approaches to enhance learning outcomes for the highly diverse student population of New Jersey City University (NJCU). NJCU ranks in the top hundred most diverse institutions of higher education in the country. Its undergraduate population is 38% Hispanic, 22% Black, 22% White, and 8% Asian (NJCU fact sheet, 2017), and many
of its students do not speak English as their first language. While the value of next-generation learning to assist non-traditional student populations has been discussed in the literature, the current chapter focuses on something that is addressed less frequently: the potential pitfalls of using newer modes of learning. A common assumption is that it is college instructors who move reluctantly toward learner-centered and project-based approaches to instructional delivery, whereas modern students eagerly await digital, cooperative, and other new learning experiences. In reality, the more diverse the student population, the more likely it is that there will be a wide variety of reactions—including resistance—to unknown or unfamiliar learning experiences.

This chapter dissects how students move through different stages of adjustment to the next-generation classroom culture. After defining what next-generation learning is, we describe stages of “acculturation” or adjustment to new learning. Next we identify some common reactions or behaviors of students at each stage, as they cope with unfamiliar ways of learning. Since motivation plays a key role in how expeditiously students move through the process of adjustment to new learning approaches, it will figure throughout the discussion. The chapter will consider how instructors can anticipate common student reactions (both positive and negative).

Finally, we suggest what instructors can do to guide students toward more successful learning outcomes—how instructors can plan and revise their curriculum, and manage their in-person classroom to facilitate all students’ ability to experience “self-efficacy” (Judge, Erez, & Bono, 1998). The fact that an instructor uses or tries to utilize NxGL techniques guarantees nothing in terms of results; instructors need to understand how to support student adjustment and the overall student experience. The improved skills of the instructor will allow students to benefit to the fullest possible extent from new learning opportunities. The ultimate goal is for instructors to feel truly at home with next-generation teaching and learning, because their comfort level is essential for student success as well as satisfaction.

BACKGROUND

Next-Generation Learning (NxGL)

There is an unfortunate consensus among educational stakeholders that we are far from achieving the results we want in terms of college student mastery of content (factual knowledge) and critical thinking ability, as well as in terms of students’ facility in applying content knowledge to real-life situations. To cite an example from just one set of disciplines, many have expressed concern about the rates of participation, expectations, and success of minority students in science, technology, engineering, and mathematics (STEM) (Aud, Fox, & Kewal Remani, 2010; Coleman, Farina, & Rabinovich, 2016; National Science Foundation, National Center for Science and Engineering Statistics, 2015). The concern of educators across disciplines indicates a need for new approaches: If we are not achieving the educational result we want, we must try something different.

In the context of this nationwide discussion, next-generation learning has been proposed as exactly the “something different” that could produce a better educational result. The term “next-generation learning” (NxGL) can be associated with numerous foundation-based, branded initiatives around the country that promote the use of technology in student-centered and proficiency- or competency-based learning approaches (Sturgis & Patrick, 2010). The Bill and Melinda Gates Foundation is one such organization that employs this term (Next generation learning, 2010). Sturgis and Patrick (2010) use the definition