Chapter XIV
Pedagogy Meets Technology in the Somatically-Enhanced Approach

Maliwan Buranapatana
Khon Kaen University, Thailand

Felicia Zhang
University of Canberra, Australia

ABSTRACT

This chapter reports on a study which evaluates the effect of a language teaching approach called the Somatically-Enhanced Approach (Zhang, 2006) in the teaching of Thai to Vietnamese learners in Vietnam. The teaching methodology deals with training students’ pronunciation in Thai from the beginning. Innovations include: the using relaxation techniques to relax students; the use of humming, clapping and physical gestures to emphasize the rhythm of Thai; the use of a Speech comparison tool (Sptool) (Zhang & Newman, 2003) and the provision of all learning materials on CD-ROMs. Results show that after 12 face-to-face hours, Vietnamese students who undertook an intensive course in SEA achieved the same level of fluency in spoken Thai, in limited contexts, as their fellow students who studied Thai for 1 year using the traditional approach. Both quantitative and qualitative results of the study will be briefly reported including an evaluation of the Speech comparison tool.

INTRODUCTION

Research has shown that traditional methods of teaching pronunciation in learning a foreign language are not effective in creating proficient speakers of that language. This is because many of the teaching methodologies are designed along the idea of working from a database of errors that
learner typically make and then trying to find
solutions to correct those errors. The teaching
methodology described in this paper starts from
the opposite end; it deals with training students’
perceptual mechanisms to enable them to have bet-
ter pronunciation in an L2 from the beginning.

This chapter consists of the following sections:
(1) a brief discussion of the theoretical underpin-
ning that informs Somatically-Enhanced Ap-
proach (SEA); (2) a brief discussion of SEA in a
teaching Thai to Vietnamese learners in Vietnam;
(3) a description of the speech tool; and (4) results
of a study involving two groups of beginning
Thai students at the Faculty of Oriental Studies,
University of Social Sciences and Humanities,
Ho Chi Minh City, Vietnam.

THEORETICAL UNDERPINNING OF
SEA

Verbo-Tonalism

According to acoustic phonetics, a sound in any
language carries all frequencies from about 50
Hz to about 16,000 Hz (albeit at various intensi-
ties). Theoretically, the same sound can be heard
in many different ways. The ear seems to make a
“choice” as to what to hear in practice depending
on the way the ear has been trained. L2 students
tend to make such choices in the target language
using what Trubetzkoy (1939) refers to as the
“mother tongue sieve”: those sounds they are
familiar with in their mother tongue. In other
words, it is claimed, each sound has a particular
“optimal” frequency which is the frequency band,
or combination of frequency bands, at which a
native-speaker best recognizes and perceives the
sound. Students who experience difficulty with a
particular foreign language sound are considered
to not have recognized its optimum frequency
bands and, consequently, they are unable to re-
produce the sound correctly. In SEA, translation
into Vietnamese, romanization in English or tonal
diacritics are not used in an attempt to prevent the
activation of the “mother tongue sieve.”

Building upon this understanding of the nature
of sound and its part in spoken language, the late
Peter Guberina (1913-2005), a Croatian psycho-
linguistic and post-modern scholar, conducted
research, in the 1950s into speech perception,
out of which he created the Verbo-tonal method
(VTM) (Renard, 1975) of rehabilitation for people
who had severe communication difficulties.
Underlying the method is the conviction that all
language use has evolved from spoken language,
and that speech is a social event. We speak when
we want to express something or when we react
to an event and the “meaning” of speech is trans-
mitted not only by linguistic elements, but also
by the auditory and visual information present in
the rhythm, intonation, loudness, tempo, pauses,
the tension, and gestures of the speaker. Most
importantly, the auditory and visual information
in his/her production is a reflection of how he/she
perceives speech. In other words, changing a
speaker’s perception of speech will also change
his/her production of speech. If we correct his/her
production of speech, we will also have corrected
his/her perception of speech.

In addition, the design of the SEA method
has also benefited from research findings on (i)
how very young infants use prosodic packaging
of clausal units to facilitate their memory for
speech information (Mandel, Jusczyk, & Nelson,
1994). Hirsh-Pasek, Nelson, Jusczyk, Cassidy,
and Kennedy (1987) found that infants as young
as seven months old respond to prosodic markers
in the input; (ii) a speaker’s natural synchroniza-
tion of speech and movements (Condon, 1985);
(iii) therapeutic uses of movements for speech
and hearing impaired children (Brüll, 2003; Di-
Johnson & Craig, 1971); (iv) Learning through
multi-modalities is more effective for pronuncia-
tion training than a single modality (Derwing,
Munro, & Wiebe, 1998).