Content-Rich Versus Content-Deficient Video-Based Visuals in L2 Academic Listening Tests: Pilot Study

Roman Olegovich Lesnov, Northern Arizona University, Flagstaff, USA

ABSTRACT
This article compares second language test-takers’ performance on an academic listening test in an audio-only mode versus an audio-video mode. A new method of classifying video-based visuals was developed and piloted, which used L2 expert opinions to place the video on a continuum from being content-deficient (not helpful for answering comprehension items) to content-rich (very helpful for answering comprehension items). The video for one testlet contained only the speaker’s non-verbal cues and was found to be content-deficient. The other video contained non-verbal cues overlapping with PowerPoint text and was deemed content-rich. Seventy-three ESL learners participated in the study. The video type classification method was shown to be reliable and practical. The results of the Rasch analysis showed no significant impact of condition, either the content-deficient or the content-rich, either at the testlet level or at the item level. Possible reasons and implications of these findings are discussed.

KEYWORDS
Content, Listening, Non-Verbal Cues, Test, Text, Video, Visuals

INTRODUCTION
Modern technology has dramatically altered the way second language (L2) academic listening is taught worldwide. Reflecting the visually rich characteristics of the target language use (TLU, Bachman & Palmer, 2010) domain, academic L2 listening classes nowadays are often filled with different kinds of new media such as videos and power point presentations (Lynch, 2011). New media are now ubiquitous in L2 education practices to the point that that they have changed the nature of L2 education, making it more interactive and multimodal (Royce, 2007).

This multimodality exerts pressure on traditional L2 language pedagogical practices, including listening, altering them in favor of the rapidly changing technology-enhanced educational reality. Royce (2007) suggested using “multimodal communicative language competence” to account for L2 learners’ ability to combine modes of communication to develop plausible interpretations in the target language. In this respect, L2 multimodal listening competence includes the abilities to interpret both the visual and the verbal modes of presentation.

While the multimodal nature of the L2 listening competence is mainly accepted by L2 scholars, the field of L2 listening assessment keeps operationalizing L2 listening as an exclusively auditory skill. For instance, existing standardized high-stakes tests of academic English proficiency are mainly

DOI: 10.4018/IJCALLT.2018010102

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
visual-free (Kang, Gutierrez Arvizu, Chaipuapae, & Lesnov, 2016). To eliminate this mismatch, a growing number of researchers have advocated for the inclusion of visuals in L2 listening tests (e.g., Ockey, 2007; Suvorov, 2015, Wagner, 2008). These researchers’ arguments mainly stemmed from the effects of videos on the difficulty of a listening message.

Existing research into the effects of videos on listening test scores has been limited to the investigation of two types of video-based visuals, non-verbal cues from the speaker and pictures illustrating the listening content. In contrast, visualized textual information has been paid much less attention with regards to exploring its role in the L2 academic listening comprehension construct. Since visual text is commonly used in academic listening contexts, its affiliation with the construct may be justifiable. One way to justify the inclusion of decoding textual visuals into the L2 academic listening construct is to uncover the effect of video-based text on listening comprehension.

BACKGROUND

L2 Listening Construct

Listening is considered to be one of the most complex and least understood L2 skills because the process of listening cannot be directly observed, and, therefore, is hard to unravel (Flowerdew & Miller, 2005). As a result, there is no universally accepted theoretical conceptualization of the listening skill. Instead, listening has been defined differently by applied linguistics scholars. While it is agreed that decoding an incoming acoustic verbal signal is a core process during L2 listening (Buck, 2001), scholars added other dimensions to the concept of listening including top-down and bottom-up cognitive processing of the listening stimulus, using global and local cognitive strategies, metacognitive strategies, sociocultural context and knowledge, and interactive competence (Dijk & Kintsch, 1983; Field, 2008; Rost, 1990; Vandergrift & Goh, 2012).

The decoding of visual information is another aspect of the listening process that has received considerable scholarly attention. Visual decoding is now predominantly viewed as part of the listening skill. Table 1 lists listening definitions and the role of visuals proposed by field theoreticians in the last fifty years (from the 1960s to 2010s). As can be seen from Table 1, seven out of nine definitions include the processing of visual information as an essential part of the listening process. Some scholars consider visual decoding to be a part of linguistic processing (e.g., Rost, 2011) while others view it as a separate sub-process within listening (e.g., Flowerdew & Miller, 2005). Only Lado (1961) and Vandergrift and Goh (2012) did not explicitly assign visuals a role in their definitions. However, Vandergrift and Goh admitted visuals’ helpfulness for listening comprehension (pp. 176-177).

The majority of the visual-inclusive listening definitions only account for nonverbal visual cues, or kinesics, which are believed to provide help with contextualizing the listening message and occasionally clarifying its meaning (e.g., Field, 2008). In contrast, there are few definitions including the processing of other types of visuals that may more directly illustrate the content of a listening message. Rost (2011) is the only proponent of including viewing graphical or textual visuals, such as visual aids during a lecture, into a listening construct.

Academic Listening

Academic listening is a visually rich language context. According to Lynch (2011), academic contexts require listening to regular and guest academic lectures, talks, and conference presentations, as well as participating in office hours, seminars, and study groups. Most of those contexts are characterized by a high cognitive load imposed by the complexities of academic content, the speed of comprehension, the need to understand and produce simultaneously (e.g., note-taking), and the possible accentedness of a lecturer. To help listeners to cope with these complexities, the academic listening TLU domain is richly accompanied by visual aids that predominantly include PowerPoint presentations or hand-outs with textual, graphical, or numerical information illustrating and explaining concepts or delineating
Related Content

Exploring the Concept of Emergent Coherence in a Corpus of Korean EFL Texts
Terence Murphy (2009). *Learning Culture and Language through ICTs: Methods for Enhanced Instruction* (pp. 139-152).
[www.igi-global.com/chapter/exploring-concept-emergent-coherence-corpus/25517?camid=4v1a](www.igi-global.com/chapter/exploring-concept-emergent-coherence-corpus/25517?camid=4v1a)

Short Video Production for Language Learning and Assessment
Fang Pan (2018). *Teaching Cases Collection* (pp. 194-217).
[www.igi-global.com/chapter/short-video-production-for-language-learning-and-assessment/186531?camid=4v1a](www.igi-global.com/chapter/short-video-production-for-language-learning-and-assessment/186531?camid=4v1a)
Learning to Learn Digitally: Getting Students on the Road to Autonomy
[www.igi-global.com/article/learning-to-learn-digitally/100369?camid=4v1a](www.igi-global.com/article/learning-to-learn-digitally/100369?camid=4v1a)

Understanding Students' Instructional Delivery Preferences and Other Classroom Logistics
[www.igi-global.com/chapter/understanding-students-instructional-delivery-preferences-and-other-classroom-logistics/115701?camid=4v1a](www.igi-global.com/chapter/understanding-students-instructional-delivery-preferences-and-other-classroom-logistics/115701?camid=4v1a)